代码拉取完成,页面将自动刷新
Tensorflow version of SCNN in CULane.
conda create -n tensorflow_gpu pip python=3.5
source activate tensorflow_gpu
pip install --upgrade tensorflow-gpu==1.3.0
pip3 install -r lane-detection-model/requirements.txt
Download the vgg.npy here and put it in lane-detection-model/data.
Download the pre-trained model here.
cd lane-detection-model
CUDA_VISIBLE_DEVICES="0" python tools/test_lanenet.py --weights_path path/to/model_weights_file --image_path path/to/image_name_list
Note that path/to/image_name_list should be like test_img.txt. Now, you get the probability maps from our model. To get the final performance, you need to follow SCNN to get curve lines from probability maps as well as calculate precision, recall and F1-measure.
cd lane-detection-model
CUDA_VISIBLE_DEVICES="0" python tools/train_lanenet.py --net vgg --dataset_dir path/to/CULane-dataset/
Note that path/to/CULane-dataset/ should contain files like train_gt.txt and val_gt.txt.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。