同步操作将从 lshain/unity-jar-resolver 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
This library is intended to be used by any Unity plugin that requires:
Many Unity plugins have dependencies upon Android specific libraries, iOS CocoaPods, and sometimes have transitive dependencies upon other Unity plugins. This causes the following problems:
The Play Services Resolver plugin (the name comes from its origin of just handling Google Play Services dependencies on Android) provides solutions for each of these problems.
The Android Resolver component of this plugin will download and integrate Android library dependencies and handle any conflicts between plugins that share the same dependencies.
Without the Android Resolver, typically Unity plugins bundle their AAR and
JAR dependencies, e.g. a Unity plugin SomePlugin
that requires the Google
Play Games Android library would redistribute the library and its transitive
dependencies in the folder SomePlugin/Android/
. When a user imports
SomeOtherPlugin
that includes the same libraries (potentially at different
versions) in SomeOtherPlugin/Android/
, the developer using SomePlugin
and
SomeOtherPlugin
will see an error when building for Android that can be hard
to interpret.
Using the Android Resolver to manage Android library dependencies:
The iOS Resolver component of this plugin integrates with CocoaPods to download and integrate iOS libraries and frameworks into the Xcode project Unity generates when building for iOS. Using CocoaPods allows multiple plugins to utilize shared components without forcing developers to fix either duplicate or incompatible versions of libraries included through multiple Unity plugins in their project.
Finally, the Version Handler component of this plugin simplifies the process of managing transitive dependencies of Unity plugins and each plugin's upgrade process.
For example, without the Version Handler plugin, if:
SomePlugin
includes the Play Services Resolver
plugin at
version 1.1.SomeOtherPlugin
includes the Play Services Resolver
plugin at version 1.2.The version of Play Services Resolver
included in the developer's project
depends upon the order the developer imports SomePlugin
or SomeOtherPlugin
.
This results in:
Play Services Resolver
at version 1.2, if SomePlugin
is imported then
SomeOtherPlugin
is imported.Play Services Resolver
at version 1.1, if SomeOtherPlugin
is imported
then SomePlugin
is imported.The Version Handler solves the problem of managing transitive dependencies by:
When using the Version Handler to manage Play Services Resolver
included in
SomePlugin
and SomeOtherPlugin
, from the prior example, version 1.2 will
always be the version activated in a developer's Unity project.
Plugin creators are encouraged to adopt this library to ease integration for their customers. For more information about integrating Play Services Resolver into your own plugin, see the Plugin Redistribution section of this document.
The Android Resolver and iOS Resolver components of the plugin only work with Unity version 4.6.8 or higher.
The Version Handler component only works with Unity 5.x or higher as it
depends upon the PluginImporter
UnityEditor API.
Before you import the Play Services Resolver into your plugin project, you first need to consider whether you intend to redistribute Play Services Resolver along with your own plugin.
Redistributing the Play Services Resolver
inside your own plugin will ease
the integration process for your users, by resolving dependency conflicts
between your plugin and other plugins in a user's project.
If you wish to redistribute the Play Services Resolver
inside your plugin,
you must follow these steps when importing the
play-services-resolver-*.unitypackage
, and when exporting your own plugin
package:
play-services-resolver-*.unitypackage
into your plugin
project by
running Unity from the command line, ensuring that
you add the -gvh_disable
option.Assets/PlayServicesResolver
directory.-gvh_disable
option.You must specify the -gvh_disable
option in order for the Version
Handler to work correctly!
For example, the following command will import the
play-services-resolver-1.2.46.0.unitypackage
into the project
MyPluginProject
and export the entire Assets folder to
MyPlugin.unitypackage
:
Unity -gvh_disable \
-batchmode \
-importPackage play-services-resolver-1.2.46.0.unitypackage \
-projectPath MyPluginProject \
-exportPackage Assets MyPlugin.unitypackage \
-quit
The Version Handler component relies upon deferring the load of editor DLLs
so that it can run first and determine the latest version of a plugin component
to activate. The build of the Play Services Resolver
plugin has Unity asset
metadata that is configured so that the editor components are not
initially enabled when it's imported into a Unity project. To maintain this
configuration when importing the Play Services Resolver
.unitypackage
into a Unity plugin project, you must specify the command line option
-gvh_disable
which will prevent the Version Handler component from running and
changing the Unity asset metadata.
The Android Resolver copies specified dependencies from local or remote Maven repositories into the Unity project when a user selects Android as the build target in the Unity editor.
Add the play-services-resolver-*.unitypackage
to your plugin
project (assuming you are developing a plugin). If you are redistributing
the Play Services Resolver with your plugin, you must follow the
import steps in the Getting Started section!
Copy and rename the SampleDependencies.xml
file into your
plugin and add the dependencies your plugin requires.
The XML file just needs to be under an Editor
directory and match the
name *Dependencies.xml
. For example,
MyPlugin/Editor/MyPluginDependencies.xml
.
Follow the steps in the Getting Started section when you are exporting your plugin package.
For example, to add the Google Play Games library
(com.google.android.gms:play-services-games
package) at version 9.8.0
to
the set of a plugin's Android dependencies:
<dependencies>
<androidPackages>
<androidPackage spec="com.google.android.gms:play-services-games:9.8.0">
<androidSdkPackageIds>
<androidSdkPackageId>extra-google-m2repository</androidSdkPackageId>
</androidSdkPackageIds>
</androidPackage>
</androidPackages>
</dependencies>
The version specification (last component) supports:
9.8.0
9.8.+
would match 9.8.0, 9.8.1 etc. choosing the most
recent version.LATEST
or +
. We do not recommend using this
unless you're 100% sure the library you depend upon will not break your
Unity plugin in future.The above example specifies the dependency as a component of the Android SDK
manager such that the Android SDK manager will be executed to install the
package if it's not found. If your Android dependency is located on Maven
central it's possible to specify the package simply using the androidPackage
element:
<dependencies>
<androidPackages>
<androidPackage spec="com.google.api-client:google-api-client-android:1.22.0" />
</androidPackages>
</dependencies>
By default the Android Resolver automatically monitors the dependencies you have
specified and the Plugins/Android
folder of your Unity project. The
resolution process runs when the specified dependencies are not present in your
project.
The auto-resolution process can be disabled via the
Assets > Play Services Resolver > Android Resolver > Settings
menu.
Manual resolution can be performed using the following menu options:
Assets > Play Services Resolver > Android Resolver > Resolve
Assets > Play Services Resolver > Android Resolver > Force Resolve
Some AAR files (for example play-services-measurement) contain variables that
are processed by the Android Gradle plugin. Unfortunately, Unity does not
perform the same processing when using Unity's Internal Build System, so the
Android Resolver plugin handles known cases of this variable substition
by exploding the AAR into a folder and replacing ${applicationId}
with the
bundleID
.
Disabling AAR explosion and therefore Android manifest processing can be done
via the Assets > Play Services Resolver > Android Resolver > Settings
menu.
You may want to disable explosion of AARs if you're exporting a project to be
built with Gradle / Android Studio.
Some AAR files contain native libraries (.so files) for each ABI supported by Android. Unfortunately, when targeting a single ABI (e.g x86), Unity does not strip native libraries for unused ABIs. To strip unused ABIs, the Android Resolver plugin explodes an AAR into a folder and removes unused ABIs to reduce the built APK size. Furthermore, if native libraries are not stripped from an APK (e.g you have a mix of Unity's x86 library and some armeabi-v7a libraries) Android may attempt to load the wrong library for the current runtime ABI completely breaking your plugin when targeting some architectures.
AAR explosion and therefore ABI stripping can be disabled via the
Assets > Play Services Resolver > Android Resolver > Settings
menu. You may
want to disable explosion of AARs if you're exporting a project to be built
with Gradle / Android Studio.
By default the Android Resolver will use Gradle to download dependencies prior to integrating them into a Unity project. This works with Unity's internal build system and Gradle / Android Studio project export.
It's possible to change the resolution strategy via the
Assets > Play Services Resolver > Android Resolver > Settings
menu.
The Android Resolver creates the
ProjectSettings/AndroidResolverDependencies.xml
to quickly determine the set
of resolved dependencies in a project. This is used by the auto-resolution
process to only run the expensive resolution process when necessary.
The iOS resolver component of this plugin manages
CocoaPods. A CocoaPods Podfile
is generated and
the pod
tool is executed as a post build process step to add dependencies
to the Xcode project exported by Unity.
Dependencies for iOS are added by referring to CocoaPods.
Add the play-services-resolver-*.unitypackage
to your plugin
project (assuming you are developing a plugin). If you are redistributing
the Play Services Resolver with your plugin, you must follow the
import steps in the Getting Started section!
Copy and rename the SampleDependencies.xml file into your plugin and add the dependencies your plugin requires.
The XML file just needs to be under an Editor
directory and match the
name *Dependencies.xml
. For example,
MyPlugin/Editor/MyPluginDependencies.xml
.
Follow the steps in the Getting Started section when you are exporting your plugin package.
For example, to add the AdMob pod, version 7.0 or greater with bitcode enabled:
<dependencies>
<iosPods>
<iosPod name="Google-Mobile-Ads-SDK" version="~> 7.0" bitcodeEnabled="true"
minTargetSdk="6.0" />
</iosPods>
</dependencies>
The CocoaPods
are either:
Xcode project
integration.pod
tool
is used as intended to generate a xcworkspace which references the
CocoaPods. We call this Xcode workspace
integration.The resolution strategy can be changed via the
Assets > Play Services Resolver > iOS Resolver > Settings
menu.
The Version Handler component of this plugin manages:
Unity plugins can be managed by the Version Handler using the following steps:
gvh
asset label to each asset (file) you want Version Handler
to manage.gvh_version-VERSION
label to each asset where VERSION
is the
version of the plugin you're releasing (e.g 1.2.3).gvh_targets-editor
label to each editor DLL in your
plugin and disable editor
as a target platform for the DLL.
The Version Handler will enable the most recent version of this DLL when
the plugin is imported.MY_UNIQUE_PLUGIN_NAME_VERSION.txt
that lists all the files in your plugin relative to the project root.
Then add the gvh_manifest
label to the asset to indicate this file is
a plugin manifest.Play Services Resolver
Unity plugin with your plugin.
See the Plugin Redistribution for the details.If you follow these steps:
To build this plugin from source you need the following tools installed:
You can build the plugin by running the following from your shell (Linux / OSX):
./gradlew build
or Windows:
./gradlew.bat build
Each time a new build of this plugin is checked into the source tree you need to do the following:
pluginVersion
in build.gradle
CHANGELOG.md
with the new version number and changes included in
the release../gradle release
which performs the following:
play-services-resolver-*.unitypackage
exploded
directory.plugin
directory.
The GUIDs of all asset metadata is modified due to the version number
change. Each file within the plugin is versioned to allow multiple
versions of the plugin to be imported into a Unity project which allows
the most recent version to be activated by the Version Handler
component../gradle gitTagRelease
which performs the following:
git add -A
to pick up all modified, new and deleted files in the tree.git commit --amend -a
to create a release commit with the release notes
in the change log.git tag -a RELEASE -m "version RELEASE"
to tag the release.此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。