108 Star 884 Fork 1.5K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval_onnx.py 3.43 KB
一键复制 编辑 原始数据 按行查看 历史
zhaoting 提交于 2022-11-17 14:18 +08:00 . move official models
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Cycle GAN ONNX test."""
import os
import onnxruntime as ort
from src.utils.args import get_args
from src.dataset.cyclegan_dataset import create_dataset
from src.utils.reporter import Reporter
from src.utils.tools import save_image
def create_session(checkpoint_path, target_device):
"""Load ONNX model and create ORT session"""
if target_device == 'GPU':
providers = ['CUDAExecutionProvider']
elif target_device in ('CPU', 'Ascend'):
providers = ['CPUExecutionProvider']
else:
raise ValueError(f"Unsupported target device '{target_device}'. Expected one of: 'CPU', 'GPU', 'Ascend'")
session = ort.InferenceSession(checkpoint_path, providers=providers)
input_names = [x.name for x in session.get_inputs()]
return session, input_names
def predict():
"""Predict function."""
args = get_args("predict")
file_name, file_extension = os.path.splitext(args.export_file_name)
gen_a_file_name = f"{file_name}_AtoB{file_extension}"
gen_b_file_name = f"{file_name}_BtoA{file_extension}"
gen_a, [gen_a_input_name] = create_session(gen_a_file_name, args.platform)
gen_b, [gen_b_input_name] = create_session(gen_b_file_name, args.platform)
imgs_out = os.path.join(args.outputs_dir, "predict")
if not os.path.exists(imgs_out):
os.makedirs(imgs_out)
if not os.path.exists(os.path.join(imgs_out, "fake_A")):
os.makedirs(os.path.join(imgs_out, "fake_A"))
if not os.path.exists(os.path.join(imgs_out, "fake_B")):
os.makedirs(os.path.join(imgs_out, "fake_B"))
args.data_dir = 'testA'
ds = create_dataset(args)
reporter = Reporter(args)
reporter.start_predict("A to B")
for data in ds.create_dict_iterator(output_numpy=True):
img_a = data["image"]
path_a = data["image_name"][0]
path_b = path_a[0:-4] + "_fake_B.jpg"
[fake_b] = gen_a.run(None, {gen_a_input_name: img_a})
save_image(fake_b, os.path.join(imgs_out, "fake_B", path_b))
save_image(img_a, os.path.join(imgs_out, "fake_B", path_a))
reporter.info('save fake_B at %s', os.path.join(imgs_out, "fake_B", path_a))
reporter.end_predict()
args.data_dir = 'testB'
ds = create_dataset(args)
reporter.dataset_size = args.dataset_size
reporter.start_predict("B to A")
for data in ds.create_dict_iterator(output_numpy=True):
img_b = data["image"]
path_b = data["image_name"][0]
path_a = path_b[0:-4] + "_fake_A.jpg"
[fake_a] = gen_b.run(None, {gen_b_input_name: img_b})
save_image(fake_a, os.path.join(imgs_out, "fake_A", path_a))
save_image(img_b, os.path.join(imgs_out, "fake_A", path_b))
reporter.info('save fake_A at %s', os.path.join(imgs_out, "fake_A", path_b))
reporter.end_predict()
if __name__ == "__main__":
predict()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助