代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""postprocess for 310 inference"""
import glob
import time
import argparse
import numpy as np
parser = argparse.ArgumentParser(description="lenet preprocess data")
parser.add_argument("--result_path", type=str, required=True, help="result path.")
parser.add_argument("--label_path", type=str, required=True, help="label path.")
args = parser.parse_args()
num_classes = 4
shape_ious = []
file_list = []
file_list1 = glob.glob(args.result_path+'/*')
for i in range(len(file_list1)):
file_list.append(args.result_path+'/shapenet_data_bs1_%03d'%i+'_0.bin')
for i, file_name in enumerate(file_list):
print("calaccuracy of ", file_name)
data = np.fromfile(file_name, dtype=np.float32)
label = np.load(args.label_path)
label = label[i]
start_time = time.time()
pred = data.reshape(1, 2500, -1)
pred_np = np.argmax(pred, axis=2)
target_np = label - 1
for shape_idx in range(target_np.shape[0]):
parts = range(num_classes)
part_ious = []
for part in parts:
I = np.sum(np.logical_and(pred_np[shape_idx] == part, target_np[shape_idx] == part))
U = np.sum(np.logical_or(pred_np[shape_idx] == part, target_np[shape_idx] == part))
if U == 0:
iou = 1
else:
iou = I / float(U)
part_ious.append(iou)
shape_ious.append(np.mean(part_ious))
print('='*50)
print(np.mean(part_ious))
print('='*50)
print("Final Miou: {}".format(np.mean(shape_ious)))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。