Ai
107 Star 891 Fork 1.4K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval.py 4.40 KB
一键复制 编辑 原始数据 按行查看 历史
Shawny 提交于 2024-06-13 17:51 +08:00 . update context API
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Eval"""
import argparse
import ast
import os
import time
import mindspore
import mindspore.dataset as ds
from mindspore.nn.metrics import Accuracy
from mindspore.train import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.dataset import DatasetGenerator
from src.pointnet2 import PointNet2, NLLLoss
def parse_args():
"""PARAMETERS"""
parser = argparse.ArgumentParser('MindSpore PointNet++ Eval Configurations.')
parser.add_argument('--batch_size', type=int, default=24, help='batch size in training')
parser.add_argument('--data_path', type=str, default='../data/modelnet40_normal_resampled/', help='data path')
parser.add_argument('--pretrained_ckpt', type=str, default='')
parser.add_argument('--num_category', default=40, type=int, choices=[10, 40], help='training on ModelNet10/40')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number')
parser.add_argument('--use_normals', type=ast.literal_eval, default=False, help='use normals')
parser.add_argument('--process_data', action='store_true', default=False, help='save data offline')
parser.add_argument('--use_uniform_sample', action='store_true', default=False, help='use uniform sampiling')
parser.add_argument('--platform', type=str, default='Ascend', help='run platform')
parser.add_argument('--enable_modelarts', type=ast.literal_eval, default=False)
parser.add_argument('--data_url', type=str)
parser.add_argument('--train_url', type=str)
return parser.parse_known_args()[0]
def run_eval():
"""Run eval"""
args = parse_args()
# INIT
device_id = int(os.getenv('DEVICE_ID', '0'))
if args.enable_modelarts:
import moxing as mox
local_data_url = "/cache/data"
mox.file.copy_parallel(args.data_url, local_data_url)
pretrained_ckpt_path = "/cache/pretrained_ckpt/pretrained.ckpt"
mox.file.copy_parallel(args.pretrained_ckpt, pretrained_ckpt_path)
local_eval_url = "/cache/eval_out"
mox.file.copy_parallel(args.train_url, local_eval_url)
else:
local_data_url = args.data_path
pretrained_ckpt_path = args.pretrained_ckpt
if args.platform == "Ascend":
mindspore.set_context(mode=0, device_target="Ascend", device_id=device_id)
mindspore.set_context(max_call_depth=2048)
else:
mindspore.set_context(mode=0, device_target="GPU", max_call_depth=2000, device_id=device_id)
print(args)
# DATA LOADING
print('Load dataset ...')
data_path = local_data_url
num_workers = 8
test_ds_generator = DatasetGenerator(root=data_path, args=args, split='test', process_data=args.process_data)
test_ds = ds.GeneratorDataset(test_ds_generator, ["data", "label"], num_parallel_workers=num_workers, shuffle=False)
test_ds = test_ds.batch(batch_size=args.batch_size, drop_remainder=True, num_parallel_workers=num_workers)
# MODEL LOADING
net = PointNet2(args.num_category, args.use_normals)
# load checkpoint
print("Load checkpoint: ", args.pretrained_ckpt)
param_dict = load_checkpoint(pretrained_ckpt_path)
load_param_into_net(net, param_dict)
net_loss = NLLLoss()
model = Model(net, net_loss, metrics={"Accuracy": Accuracy()})
# EVAL
net.set_train(False)
print('Starting eval ...')
time_start = time.time()
print('Time: ', time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()))
result = model.eval(test_ds, dataset_sink_mode=True)
print("result : {}".format(result))
# END
print('Total time cost: {} min'.format("%.2f" % ((time.time() - time_start) / 60)))
print('Eval done!')
if args.enable_modelarts:
mox.file.copy_parallel(local_eval_url, args.train_url)
if __name__ == '__main__':
run_eval()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助