代码拉取完成,页面将自动刷新
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into mindir model#################
python export.py
"""
import os
import numpy as np
import mindspore
from mindspore import Tensor
from mindspore import export, load_checkpoint, load_param_into_net
from src.lstm import SentimentNet
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_device_id
def modelarts_process():
config.ckpt_file = os.path.join(config.output_path, config.ckpt_file)
@moxing_wrapper(pre_process=modelarts_process)
def export_lstm():
""" export lstm """
mindspore.set_context(
mode=0,
save_graphs=False,
device_target=config.device_target,
device_id=get_device_id())
embedding_table = np.loadtxt(os.path.join(config.preprocess_path, "weight.txt")).astype(np.float32)
if config.device_target == 'Ascend':
pad_num = int(np.ceil(config.embed_size / 16) * 16 - config.embed_size)
if pad_num > 0:
embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant')
config.embed_size = int(np.ceil(config.embed_size / 16) * 16)
network = SentimentNet(vocab_size=embedding_table.shape[0],
embed_size=config.embed_size,
num_hiddens=config.num_hiddens,
num_layers=config.num_layers,
bidirectional=config.bidirectional,
num_classes=config.num_classes,
weight=Tensor(embedding_table),
batch_size=config.batch_size)
param_dict = load_checkpoint(config.ckpt_file)
load_param_into_net(network, param_dict)
input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[config.batch_size, 500]).astype(np.int32))
export(network, input_arr, file_name=config.file_name, file_format=config.file_format)
if __name__ == '__main__':
export_lstm()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。