代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import sys
import matplotlib.pyplot as plt
import mindspore as ms
from mindspore import context as ctx
import numpy as np
from scipy import io as sio
from tqdm import tqdm
import cv2
from config import check_config
from src.args_util import command, create_arg_parser, TARGET_COCO_MULTI, TARGET_MPII_SINGLE
from src.dataset.mpii import MPII
from src.dataset.pose import Batch
from src.log import log
from src.model.pose import PoseNet, PoseNetTest
from src.model.predict import argmax_pose_predict, extract_cnn_output
from src.multiperson.visualize import show_heatmaps
from src.tool.decorator import process_cfg
from src.tool.eval.pck import enclosing_rect, print_results, rect_size
@command
def test(parser, args, cfg):
if args.target == TARGET_MPII_SINGLE:
if args.accuracy:
eval_mpii(cfg, args.prediction or args.output)
return
predict_mpii(cfg, args.visual, args.cache, args.output)
elif args.target == TARGET_COCO_MULTI:
if args.accuracy:
from src.tool.eval.coco import eval_coco
eval_coco(cfg, args.prediction)
return
from src.tool.eval.multiple import test as multiple_test
multiple_test(cfg, args.cache, args.visual, args.dev,
args.score_maps_cached, args.graph, args.output, args.range_num, args.range_index)
else:
parser.print_help()
def reshape_image(cfg=None, batch=None):
"""
reshape image
"""
test_shape = (cfg.image_width, cfg.image_height)
img = batch[Batch.inputs].transpose([1, 2, 0])
img_shape = img.shape
ratio = (test_shape[0] / img_shape[1], test_shape[1] / img_shape[0])
img = cv2.resize(img, test_shape, interpolation=cv2.INTER_CUBIC)
return np.expand_dims(img.transpose([2, 0, 1]), axis=0), ratio
def test_ascend(test_net, cfg=None):
"""
entry for predicting single mpii
Args:
cfg: config
visual: if True, visualize prediction
cache: if True, cache score map
output: path to output
"""
dataset = MPII(cfg)
dataset.set_mirror(False)
num_images = len(dataset)
predictions = np.zeros((num_images,), dtype=np.object)
for i in tqdm(range(num_images)):
batch = dataset.get_item(i)
img, ratio = reshape_image(cfg, batch)
o = test_net(ms.Tensor(img, dtype=ms.dtype.float32))
out = o[0].transpose([0, 2, 3, 1]).asnumpy()
locref = o[2].transpose([0, 2, 3, 1]).asnumpy() if (len(o) >= 3 and o[2] is not None) else None
pairwise_pred = o[1].transpose([0, 2, 3, 1]).asnumpy() if (len(o) >= 2 and o[1] is not None) else None
scmap, locref, _ = extract_cnn_output(out, locref, pairwise_pred, cfg)
pose = argmax_pose_predict(scmap, locref, cfg.stride)
pose_refscale = np.copy(pose)
pose_refscale[:, 0:2] /= cfg.global_scale
pose_refscale[:, 0] /= ratio[0]
pose_refscale[:, 1] /= ratio[1]
predictions[i] = pose_refscale
return predictions
@process_cfg
def predict_mpii(cfg=None, visual=False, cache=False, output=None):
"""
entry for predicting single mpii
Args:
cfg: config
visual: if True, visualize prediction
cache: if True, cache score map
output: path to output
"""
cfg.train = False
ctx.set_context(**cfg.context)
out_dir = cfg.scoremap_dir
if cache:
if not os.path.exists(out_dir):
os.makedirs(out_dir)
dataset = MPII(cfg)
dataset.set_mirror(False)
net = PoseNet(cfg=cfg)
test_net = PoseNetTest(net, cfg)
if hasattr(cfg, 'load_ckpt') and os.path.exists(cfg.load_ckpt):
ms.load_checkpoint(cfg.load_ckpt, net=test_net)
num_images = len(dataset)
predictions = np.zeros((num_images,), dtype=np.object)
for i in range(num_images):
log.info('processing image %s/%s', i, num_images - 1)
batch = dataset.get_item(i)
o = test_net(
ms.Tensor(np.expand_dims(batch[Batch.inputs], axis=0),
dtype=ms.dtype.float32),
)
out = o[0].transpose([0, 2, 3, 1]).asnumpy()
locref = o[1].transpose([0, 2, 3, 1]).asnumpy() if o[1] is not None else None
pairwise_pred = o[2].transpose([0, 2, 3, 1]).asnumpy() if o[2] is not None else None
scmap, locref, _ = extract_cnn_output(out, locref, pairwise_pred,
cfg)
pose = argmax_pose_predict(scmap, locref, cfg.stride)
pose_refscale = np.copy(pose)
pose_refscale[:, 0:2] /= cfg.global_scale
predictions[i] = pose_refscale
if visual:
img = np.transpose(np.squeeze(batch[Batch.inputs]).astype('uint8'), [1, 2, 0])
show_heatmaps(cfg, img, scmap, pose)
plt.waitforbuttonpress(timeout=1)
plt.close()
if cache:
base = os.path.basename(batch[Batch.data_item].im_path).decode()
raw_name = os.path.splitext(base)[0]
out_fn = os.path.join(out_dir, raw_name + '.mat')
sio.savemat(out_fn, mdict={'scoremaps': scmap.astype('float32')})
out_fn = os.path.join(out_dir, raw_name + '_locreg' + '.mat')
if cfg.location_refinement:
sio.savemat(out_fn, mdict={'locreg_pred': locref.astype('float32')})
sio.savemat(output or cfg.output, mdict={'joints': predictions})
@process_cfg
def eval_mpii(cfg=None, prediction=None):
"""
eval mpii entry
"""
dataset = MPII(cfg)
if prediction is None or isinstance(prediction, str):
filename = prediction or cfg.output
pred = sio.loadmat(filename)
joints = pred['joints']
else:
joints = np.array([prediction])
pck_ratio_thresh = cfg.pck_threshold
num_joints = cfg.num_joints
num_images = joints.shape[1]
pred_joints = np.zeros((num_images, num_joints, 2))
gt_joints = np.zeros((num_images, num_joints, 2))
pck_thresh = np.zeros((num_images, 1))
gt_present_joints = np.zeros((num_images, num_joints))
for k in range(num_images):
pred = joints[0, k]
gt = dataset.data[k].joints[0]
if gt.shape[0] == 0:
continue
gt_joint_ids = gt[:, 0].astype('int32')
rect = enclosing_rect(gt[:, 1:3])
pck_thresh[k] = pck_ratio_thresh * np.amax(rect_size(rect))
gt_present_joints[k, gt_joint_ids] = 1
gt_joints[k, gt_joint_ids, :] = gt[:, 1:3]
pred_joints[k, :, :] = pred[:, 0:2]
dists = np.sqrt(np.sum((pred_joints - gt_joints) ** 2, axis=2))
correct = dists <= pck_thresh
num_all = np.sum(gt_present_joints, axis=0)
num_correct = np.zeros((num_joints,))
for j_id in range(num_joints):
num_correct[j_id] = np.sum(correct[gt_present_joints[:, j_id] == 1, j_id], axis=0)
pck = num_correct / num_all * 100.0
print_results(pck, cfg)
def main():
parser = create_arg_parser()['eval']
args = parser.parse_args(sys.argv[1:])
if args.device_target == 'Ascend':
cfg = check_config(args.config, args)
cfg.model_arts.IS_MODEL_ARTS = False
ms.context.set_context(**cfg.context)
net = PoseNet(cfg=cfg)
test_net = PoseNetTest(net, cfg)
ms.load_checkpoint(args.option[0], net=test_net)
print("Loading", args.option[0], "succeeded!")
cfg.train = False
predictions = test_ascend(test_net, cfg)
eval_mpii(cfg, predictions)
else:
test(parser, args)
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。