代码拉取完成,页面将自动刷新
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Convert ckpt to air/mindir."""
import os
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
from src.backbone.resnet import get_backbone
from model_utils.config import config
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id
def modelarts_pre_process():
"""modelarts pre process function."""
config.file_name = os.path.join(config.output_path, config.file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_export():
"""run export."""
config.pre_bn = config.export_pre_bn
config.inference = config.export_inference
config.use_se = config.export_use_se
config.emb_size = config.export_emb_size
config.act_type = config.export_act_type
config.backbone = config.export_backbone
config.use_drop = config.export_use_drop
context.set_context(
mode=context.GRAPH_MODE, device_target=config.device_target, save_graphs=False, device_id=get_device_id()
)
network = get_backbone(config)
ckpt_path = config.pretrained
if os.path.isfile(ckpt_path):
param_dict = load_checkpoint(ckpt_path)
param_dict_new = {}
for key, values in param_dict.items():
if key.startswith("moments."):
continue
elif key.startswith("network."):
param_dict_new[key[8:]] = values
else:
param_dict_new[key] = values
load_param_into_net(network, param_dict_new)
print("-----------------------load model success-----------------------")
else:
print("-----------------------load model failed -----------------------")
network.add_flags_recursive(fp16=True)
network.set_train(False)
input_data = np.random.uniform(low=0, high=1.0, size=(config.batch_size, 3, 112, 112)).astype(np.float32)
tensor_input_data = Tensor(input_data)
file_path = ckpt_path
export(network, tensor_input_data, file_name=config.file_name, file_format=config.file_format)
print("-----------------------export model success, save file:{}-----------------------".format(file_path))
if __name__ == "__main__":
run_export()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。