Ai
107 Star 890 Fork 1.4K

MindSpore/models
暂停

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
export.py 2.13 KB
一键复制 编辑 原始数据 按行查看 历史
lose4578 提交于 2023-01-12 22:08 +08:00 . GhostSR model commit
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air, mindir models#################
python export.py
"""
import os
import numpy as np
import mindspore as ms
from mindspore import Tensor, export, context
from model_utils.config import config
from model_utils.device_adapter import get_device_id
from model_utils.moxing_adapter import moxing_wrapper
from src.utils import init_net
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
context.set_context(device_id=get_device_id())
MAX_HR_SIZE = 2040
@moxing_wrapper()
def run_export():
"""
run export
"""
print(config)
cfg = config
if cfg.pre_trained is None:
raise RuntimeError('config.pre_trained is None.')
net = init_net(cfg)
max_lr_size = MAX_HR_SIZE // cfg.scale
input_arr = Tensor(np.ones([1, cfg.n_colors, max_lr_size, max_lr_size]), ms.float32)
file_name = os.path.splitext(os.path.basename(cfg.pre_trained))[0]
file_name = file_name + f"_InputSize{max_lr_size}"
file_path = os.path.join(cfg.output_path, file_name)
file_format = 'MINDIR'
num_params = sum([param.size for param in net.parameters_dict().values()])
export(net, input_arr, file_name=file_path, file_format=file_format)
print(f"export success", flush=True)
print(
f"{cfg.pre_trained} -> {file_path}.{file_format.lower()}, net parameters = {num_params / 1000000:>0.4}M",
flush=True)
if __name__ == '__main__':
run_export()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助