代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train GENet."""
import os
import argparse
from mindspore import context
from mindspore import Tensor
from mindspore.nn.optim import Momentum
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor, TimeMonitor
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init
from mindspore.common import set_seed
from mindspore.parallel import set_algo_parameters
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from src.CrossEntropySmooth import CrossEntropySmooth
from src.resnet50_v1 import get_resnet50v1b as net
from src.lr_generator import get_lr
from src.dataset import create_dataset
from src.config import config1 as config
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
help="Device target, support Ascend, GPU and CPU.")
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
parser.add_argument('--is_modelarts', type=str, default="False", help='is train on modelarts')
args_opt = parser.parse_args()
if args_opt.is_modelarts == "True":
import moxing as mox
set_seed(1)
def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
"""remove useless parameters according to filter_list"""
for key in list(origin_dict.keys()):
for name in param_filter:
if name in key:
print("Delete parameter from checkpoint: ", key)
del origin_dict[key]
break
if __name__ == '__main__':
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv("RANK_SIZE"))
ckpt_save_dir = config.save_checkpoint_path
local_train_data_url = args_opt.data_url
if args_opt.is_modelarts == "True":
local_summary_dir = "/cache/summary"
local_data_url = "/cache/data"
local_train_url = "/cache/ckpt"
local_zipfolder_url = "/cache/tarzip"
ckpt_save_dir = local_train_url
mox.file.make_dirs(local_train_url)
mox.file.make_dirs(local_summary_dir)
filename = "imagenet_original.tar.gz"
# transfer dataset
local_data_url = os.path.join(local_data_url, str(device_id))
mox.file.make_dirs(local_data_url)
local_zip_path = os.path.join(local_zipfolder_url, str(device_id), filename)
obs_zip_path = os.path.join(args_opt.data_url, filename)
mox.file.copy(obs_zip_path, local_zip_path)
unzip_command = "tar -xvf %s -C %s" % (local_zip_path, local_data_url)
os.system(unzip_command)
local_train_data_url = os.path.join(local_data_url, "imagenet_original", "train")
target = args_opt.device_target
if target != 'Ascend':
raise ValueError("Unsupported device target.")
run_distribute = False
if device_num > 1:
run_distribute = True
# init context
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
if run_distribute:
context.set_context(device_id=device_id)
context.set_auto_parallel_context(device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
set_algo_parameters(elementwise_op_strategy_follow=True)
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
init()
# create dataset
dataset = create_dataset(dataset_path=local_train_data_url, do_train=True, repeat_num=1,
batch_size=config.batch_size, target=target, distribute=run_distribute)
step_size = dataset.get_dataset_size()
# define net
net = net(class_num=config.class_num, pretrained=False)
# init weight
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
load_param_into_net(net, param_dict)
else:
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d):
cell.weight.set_data(weight_init.initializer(weight_init.HeUniform(),
cell.weight.shape,
cell.weight.dtype))
if isinstance(cell, nn.Dense):
cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
cell.weight.shape,
cell.weight.dtype))
lr = get_lr(config.lr_init, config.lr_end, config.epoch_size, step_size, config.decay_mode)
lr = Tensor(lr)
# define opt
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
{'params': no_decayed_params},
{'order_params': net.trainable_params()}]
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
# define loss, model
if target == "Ascend":
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=config.label_smooth_factor,
num_classes=config.class_num)
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale,
metrics={'acc'}, amp_level="O2", keep_batchnorm_fp32=False)
else:
raise ValueError("Unsupported device target.")
# define callbacks
time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossMonitor()
rank_id = int(os.getenv("RANK_ID"))
cb = [time_cb, loss_cb]
if rank_id == 0:
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="ResNet50V1B", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
dataset_sink_mode = target != "CPU"
model.train(config.epoch_size, dataset, callbacks=cb,
sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)
if device_id == 0 and args_opt.is_modelarts == "True":
mox.file.copy_parallel(ckpt_save_dir, args_opt.train_url)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。