代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train efficientnet."""
import os
import ast
import argparse
from mindspore import context
from mindspore import Tensor
from mindspore.nn import SGD, RMSProp
from mindspore.context import ParallelMode
from mindspore.train.model import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.common import dtype as mstype
from mindspore.common import set_seed
from src.lr_generator import get_lr
from src.models.effnet import EfficientNet
from src.config import config
from src.monitor import Monitor
from src.dataset import create_dataset
from src.loss import CrossEntropySmooth
set_seed(1)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='image classification training')
# modelarts parameter
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
# Ascend parameter
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
parser.add_argument('--device_id', type=int, default=0, help='Device id')
parser.add_argument('--run_modelarts', type=ast.literal_eval, default=False, help='Run mode')
parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
# init distributed
if args_opt.run_modelarts:
import moxing as mox
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
context.set_context(device_id=device_id)
local_data_url = '/cache/data'
local_train_url = '/cache/ckpt'
if device_num > 1:
init()
context.set_auto_parallel_context(device_num=device_num, parallel_mode='data_parallel', gradients_mean=True)
local_data_url = os.path.join(local_data_url, str(device_id))
mox.file.copy_parallel(args_opt.data_url, local_data_url)
else:
if args_opt.run_distribute:
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
context.set_context(device_id=device_id)
init()
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
else:
context.set_context(device_id=args_opt.device_id)
device_num = 1
device_id = 0
# define network
net = EfficientNet(1, 1)
net.to_float(mstype.float16)
# define loss
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
# define dataset
if args_opt.run_modelarts:
dataset = create_dataset(dataset_path=local_data_url,
do_train=True,
batch_size=config.batch_size,
device_num=device_num, rank=device_id)
else:
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
batch_size=config.batch_size,
device_num=device_num, rank=device_id)
step_size = dataset.get_dataset_size()
# resume
if args_opt.resume:
ckpt = load_checkpoint(args_opt.resume)
load_param_into_net(net, ckpt)
# get learning rate
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
lr = Tensor(get_lr(lr_init=config.lr_init,
lr_end=config.lr_end,
lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs,
total_epochs=config.epoch_size,
steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode))
# define optimization
if config.opt == 'sgd':
optimizer = SGD(net.trainable_params(), learning_rate=lr, momentum=config.momentum,
weight_decay=config.weight_decay, loss_scale=config.loss_scale)
elif config.opt == 'rmsprop':
optimizer = RMSProp(net.trainable_params(), learning_rate=lr, decay=0.9, weight_decay=config.weight_decay,
momentum=config.momentum, epsilon=config.opt_eps, loss_scale=config.loss_scale)
# define model
model = Model(net, loss_fn=loss, optimizer=optimizer, loss_scale_manager=loss_scale,
metrics={'acc'}, amp_level='O3')
# define callbacks
cb = [Monitor(lr_init=lr.asnumpy())]
if config.save_checkpoint and (device_num == 1 or device_id == 0):
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
if args_opt.run_modelarts:
ckpt_cb = ModelCheckpoint(f"Efficientnet_b0-rank{device_id}", directory=local_train_url, config=config_ck)
else:
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(device_id) + '/')
ckpt_cb = ModelCheckpoint(f"Efficientnet_b0-rank{device_id}", directory=save_ckpt_path, config=config_ck)
cb += [ckpt_cb]
# begine train
model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
if args_opt.run_modelarts and config.save_checkpoint and (device_num == 1 or device_id == 0):
mox.file.copy_parallel(local_train_url, args_opt.train_url)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。