109 Star 882 Fork 1.5K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
export.py 2.99 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""run export"""
import argparse
import os
import numpy as np
from mindspore import Tensor
from mindspore import context
from mindspore import dtype as mstype
from mindspore import load_checkpoint
from mindspore import load_param_into_net
from mindspore.train.serialization import export
from src.utils import get_config
from src.utils import get_model_dataset
from src.utils import get_params_for_net
def run_export(args):
"""run export"""
cfg_path = args.cfg_path
ckpt_path = args.ckpt_path
file_name = args.file_name
file_format = args.file_format
cfg = get_config(cfg_path)
device_target = cfg['train_config']['device_target']
device_id = int(os.getenv('DEVICE_ID', '0'))
context.set_context(mode=context.GRAPH_MODE, device_target=device_target, device_id=device_id)
pointpillarsnet, _ = get_model_dataset(cfg)
params = load_checkpoint(ckpt_path)
new_params = get_params_for_net(params)
load_param_into_net(pointpillarsnet, new_params)
v = cfg['eval_input_reader']['max_number_of_voxels']
p = cfg['model']['voxel_generator']['max_number_of_points_per_voxel']
n = cfg['model']['num_point_features']
voxels = Tensor(np.zeros((1, v, p, n)), mstype.float32)
num_points = Tensor(np.zeros((1, v)), mstype.int32)
coors = Tensor(np.zeros((1, v, 4)), mstype.int32)
if cfg['model']['use_bev']:
pc_range = np.array(cfg['model']['voxel_generator']['point_cloud_range'])
voxel_size = np.array(cfg['model']['voxel_generator']['voxel_size'])
x, y, z = ((pc_range[3:] - pc_range[:3]) / voxel_size).astype('int32')
bev_map = Tensor(np.zeros((1,) + (z, x * 2, y * 2)), mstype.float32)
export(pointpillarsnet, voxels, num_points, coors, bev_map, file_name=file_name, file_format=file_format)
else:
export(pointpillarsnet, voxels, num_points, coors, file_name=file_name, file_format=file_format)
print(f'{file_name}.mindir exported successfully!')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg_path', required=True, help='')
parser.add_argument('--ckpt_path', required=True, help='')
parser.add_argument('--file_name', default='model', help='')
parser.add_argument('--file_format', default='MINDIR', choices=['MINDIR', 'AIR'], help='')
parse_args = parser.parse_args()
run_export(parse_args)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助