代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
eval.
"""
import os
import argparse
from mindspore import context
from mindspore import nn
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.dataset import create_dataset
from src.snn_mlp import snnmlp_t, snnmlp_s, snnmlp_b
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--platform', type=str, default='Ascend', help='run platform')
parser.add_argument('--model', type=str, default='snnmlp_t', choices=['snnmlp_t', 'snnmlp_s', 'snnmlp_b'],
help='model type')
args_opt = parser.parse_args()
if __name__ == '__main__':
config_platform = None
if args_opt.platform == "Ascend":
device_id = int(os.getenv('DEVICE_ID'), 0)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
device_id=device_id, save_graphs=False)
elif args_opt.platform == "GPU":
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU", save_graphs=False)
else:
raise ValueError("Unsupported platform.")
if args.model == "snnmlp_t":
net = snnmlp_t()
elif args.model == "snnmlp_s":
net = snnmlp_s()
elif args.model == "snnmlp_b":
net = snnmlp_b()
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
dataset = create_dataset(args_opt.dataset_path, do_train=False, batch_size=128)
model = Model(net, loss_fn=loss, metrics={'acc'})
res = model.eval(dataset, dataset_sink_mode=False)
print("result:", res, "ckpt=", args_opt.checkpoint_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。