Ai
107 Star 891 Fork 1.4K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
preprocess.py 5.64 KB
一键复制 编辑 原始数据 按行查看 历史
夜色如墨 提交于 2021-12-23 14:45 +08:00 . add 310 albert master
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''
albert preprocess script.
'''
import os
import argparse
import pickle
from src.dataset import create_classification_dataset, create_squad_dataset
def parse_args():
"""set and check parameters."""
parser = argparse.ArgumentParser(description="ernie preprocess")
parser.add_argument("--task_type", type=str, default="false",
choices=["mnli", "sst2", "squadv1"],
help="Eval task type, default is msra_ner")
parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
help="Enable eval data shuffle, default is false")
parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
parser.add_argument("--eval_data_file_path", type=str, default="",
help="Data path, it is better to use absolute path")
parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='result path')
parser.add_argument('--eval_json_path', type=str, default="", help='eval json path')
parser.add_argument('--vocab_file_path', type=str, default="", help='vocab file path')
parser.add_argument('--spm_model_file', type=str, default="", help='spm model file path')
args_opt = parser.parse_args()
if args_opt.eval_data_file_path == "":
raise ValueError("'eval_data_file_path' must be set when do evaluation task")
return args_opt
if __name__ == "__main__":
args = parse_args()
args.eval_batch_size = 1
if args.task_type == 'mnli' or args.task_type == 'sst2':
ds = create_classification_dataset(batch_size=args.eval_batch_size,
repeat_count=1,
data_file_path=args.eval_data_file_path,
do_shuffle=(args.eval_data_shuffle.lower() == "true"))
label_path = os.path.join(args.result_path, "03_data")
os.makedirs(label_path)
elif args.task_type == 'squadv1':
from src import tokenization
from src.squad_utils import read_squad_examples, convert_examples_to_features
tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file_path,
do_lower_case=True,
spm_model_file=args.spm_model_file)
eval_examples = read_squad_examples(args.eval_json_path, False)
if not os.path.exists(args.eval_data_file_path):
eval_features = convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=384,
doc_stride=128,
max_query_length=64,
is_training=False,
output_fn=None,
do_lower_case=True)
with open(args.eval_data_file_path, "wb") as fout:
pickle.dump(eval_features, fout)
else:
with open(args.eval_data_file_path, "rb") as fin:
eval_features = pickle.load(fin)
ds = create_squad_dataset(batch_size=args.eval_batch_size, repeat_count=1,
data_file_path=eval_features, is_training=False,
do_shuffle=(args.eval_data_shuffle.lower() == "true"))
unique_path = os.path.join(args.result_path, "03_data")
os.makedirs(unique_path)
else:
raise ValueError("dataset not supported, support: [mnli, sst2, squadv1]")
ids_path = os.path.join(args.result_path, "00_data")
mask_path = os.path.join(args.result_path, "01_data")
token_path = os.path.join(args.result_path, "02_data")
os.makedirs(ids_path)
os.makedirs(mask_path)
os.makedirs(token_path)
for idx, data in enumerate(ds.create_dict_iterator(output_numpy=True, num_epochs=1)):
input_ids = data["input_ids"]
input_mask = data["input_mask"]
segment_ids = data["segment_ids"]
if args.task_type == 'mnli' or args.task_type == 'sst2':
label_ids = data["label_ids"]
else:
unique_ids = data["unique_ids"]
file_name = args.task_type + "_batch_" + str(args.eval_batch_size) + "_" + str(idx) + ".bin"
ids_file_path = os.path.join(ids_path, file_name)
input_ids.tofile(ids_file_path)
mask_file_path = os.path.join(mask_path, file_name)
input_mask.tofile(mask_file_path)
token_file_path = os.path.join(token_path, file_name)
segment_ids.tofile(token_file_path)
if args.task_type == 'mnli' or args.task_type == 'sst2':
label_file_path = os.path.join(label_path, file_name)
label_ids.tofile(label_file_path)
elif args.task_type == 'squadv1':
unique_file_path = os.path.join(unique_path, file_name)
unique_ids.tofile(unique_file_path)
else:
raise ValueError("dataset not supported, support: [mnli, sst2, squadv1]")
print("=" * 20, "export bin files finished", "=" * 20)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助