代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""Data format is converted to MindRecord"""
import os
import ast
import time
import pickle
import argparse
import numpy as np
from tqdm import tqdm
from mindspore import context
from mindspore import dataset as ds
from mindspore.mindrecord import FileWriter
def unison_shuffle(r_data, seed=None):
"""
Shuffle data
"""
if seed is not None:
np.random.seed(seed)
y = np.array(r_data[b'y'])
c = np.array(r_data[b'c'])
r = np.array(r_data[b'r'])
assert len(y) == len(c) == len(r)
p = np.random.permutation(len(y))
print(p)
shuffle_data = {b'y': y[p], b'c': c[p], b'r': r[p]}
return shuffle_data
def split_c(c, split_id):
"""
Split
c is a list, example context
split_id is a integer, conf[_EOS_]
return nested list
"""
turns = [[]]
for _id in c:
if _id != split_id:
turns[-1].append(_id)
else:
turns.append([])
if turns[-1] == [] and len(turns) > 1:
turns.pop()
return turns
def normalize_length(_list, length, cut_type='tail'):
"""_
list is a list or nested list, example turns/r/single turn c
cut_type is head or tail, if _list len > length is used
return a list len=length and min(read_length, length)
"""
real_length = len(_list)
out_list = _list
out_length = real_length
if real_length == 0:
out_list = [0] * length
out_length = 0
elif real_length <= length:
if not isinstance(_list[0], list):
_list.extend([0] * (length - real_length))
else:
_list.extend([[]] * (length - real_length))
out_list = _list
out_length = real_length
else:
if cut_type == 'head':
out_list = _list[:length]
out_length = length
if cut_type == 'tail':
out_list = _list[-length:]
out_length = length
return out_list, out_length
def produce_one_sample(_data, index, split_id, max_turn_num, max_turn_len, turn_cut_type='tail',
term_cut_type='tail'):
'''
max_turn_num=10
max_turn_len=50
return y, nor_turns_nor_c, nor_r, turn_len, term_len, r_len
'''
c = _data[b'c'][index]
r = _data[b'r'][index][:]
y = _data[b'y'][index]
turns = split_c(c, split_id)
# normalize turns_c length, nor_turns length is max_turn_num
nor_turns, turn_len = normalize_length(turns, max_turn_num, turn_cut_type)
nor_turns_nor_c = []
term_len = []
# nor_turn_nor_c length is max_turn_num, element is a list length is max_turn_len
for c in nor_turns:
# nor_c length is max_turn_len
nor_c, nor_c_len = normalize_length(c, max_turn_len, term_cut_type)
nor_turns_nor_c.append(nor_c)
term_len.append(nor_c_len)
nor_r, r_len = normalize_length(r, max_turn_len, term_cut_type)
return y, nor_turns_nor_c, nor_r, turn_len, term_len, r_len
def data2mindrecord(orig_data, target_data, mode_, config_):
"""
Convert Dataset To Mindrecord
:param orig_data: Path of raw data.
:param target_data: Path to destination data
:param mode_: Train, Val, Test
:param config_: Parameters for processing data
:return:
"""
print('config.EOS: ', config_.EOS)
MINDRECORD_FILE = target_data
if os.path.exists(MINDRECORD_FILE):
os.remove(MINDRECORD_FILE)
if os.path.exists(MINDRECORD_FILE + '.db'):
os.remove(MINDRECORD_FILE + '.db')
writer = FileWriter(file_name=MINDRECORD_FILE, shard_num=1)
schema = {"turns": {"type": "int32", "shape": [config_.max_turn_num, config_.max_turn_len]},
"turn_len": {"type": "int32", "shape": [-1]},
"response": {"type": "int32", "shape": [-1]},
"response_len": {"type": "int32", "shape": [-1]},
"label": {"type": "int32", "shape": [-1]}}
writer.add_schema(schema, mode_ + "dataset")
with open(orig_data, "rb") as f:
print("Loading .pkl file.")
train, val, test = pickle.load(f, encoding="bytes")
print('train_data.len: ', len(train[b'y']))
print('eval_data.len: ', len(val[b'y']))
print('test_data.len: ', len(test[b'y']))
if mode_ == "train":
data = train
elif mode_ == "val":
data = val
else:
data = test
if config.shuffle:
print("Using shuffle.")
data = unison_shuffle(r_data=data, seed=config.seed)
max_turn_num = config_.max_turn_num
max_turn_len = config_.max_turn_len
EOS = config_.EOS
print('EOS: ', EOS)
data_len = int(len(data[b'y']))
print('data_len: ', data_len)
data_list = []
count = 0
for index in tqdm(range(data_len)):
count += 1
y, nor_turns_nor_c, nor_r, _, term_len, r_len = produce_one_sample(data, index, EOS, max_turn_num, max_turn_len,
turn_cut_type='tail', term_cut_type='tail')
sample = {"turns": np.array(nor_turns_nor_c),
"turn_len": np.array(term_len),
"response": np.array(nor_r),
"response_len": np.array(r_len),
"label": np.array(y)}
data_list.append(sample)
if count % 100 == 0:
writer.write_raw_data(data_list)
data_list.clear()
if count % 100000 == 0:
print('Have handle {}w lines.'.format((count / 100000) * 10))
if data_list:
writer.write_raw_data(data_list)
print('total {} lines.'.format(count))
writer.commit()
print("read over")
def precess_data_args():
"""
Precessing Data Args.
"""
parser = argparse.ArgumentParser("DAM Training Args")
parser.add_argument('--data_name', type=str, default="ubuntu", help='The data name.') # douban: douban
parser.add_argument('--device_target', type=str, default="Ascend", help="run platform, only support Ascend")
parser.add_argument('--device_id', type=int, default=0)
# net args
parser.add_argument('--max_turn_num', type=int, default=9)
parser.add_argument('--max_turn_len', type=int, default=50)
parser.add_argument('--EOS', type=int, default=28270) # 1 for douban data
# path
parser.add_argument('--data_root', type=str, default="./data/ubuntu/") # douban: ./data/douban
parser.add_argument('--raw_data', type=str, default="data.pkl")
parser.add_argument('--mode', required=True, type=str, default="train")
parser.add_argument('--shuffle', type=ast.literal_eval, default=False)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print_data', type=ast.literal_eval, default=False)
args = parser.parse_args()
return args
if __name__ == '__main__':
config = precess_data_args()
if config.data_name == "ubuntu":
config.EOS = 28270
elif config.data_name == "douban":
config.EOS = 1
else:
raise RuntimeError('{} does not exist'.format(config.data_name))
print("args: ", config, '\n')
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=config.device_id)
data_file = os.path.join(config.data_root, config.raw_data)
print("raw data: ", data_file)
mode = config.mode
target_file = os.path.join(config.data_root, ("data_" + mode + ".mindrecord"))
print('mode: ', mode)
print('target data: ', target_file)
print("Starting processing the data.")
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
data2mindrecord(orig_data=data_file, target_data=target_file, mode_=mode, config_=config)
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
print("Succeed")
if config.print_data:
dataset = ds.MindDataset(target_file, columns_list=["turns", "turn_len", "response", "response_len", "label"],
shuffle=False)
dataset = dataset.batch(200)
data_loader = dataset.create_dict_iterator()
for i, d in enumerate(data_loader, start=1):
print(i, d["turns"])
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。