代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""export checkpoint file into mindir models"""
import os
import numpy as np
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
from src.net import DAMNet, PredictWithNet
from src.config import parse_args
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
if __name__ == '__main__':
args = parse_args()
if args.model_name == "DAM_ubuntu":
args.vocab_size = 434512
args.channel1_dim = 32
elif args.model_name == "DAM_douban":
args.vocab_size = 172130
args.channel1_dim = 16
else:
raise RuntimeError('{} does not exist'.format(args.model_name))
# net
network = DAMNet(args)
network = PredictWithNet(network)
network.set_train(False)
# load checkpoint
ckpt_file = os.path.join(args.ckpt_path, args.ckpt_name)
param_dict = load_checkpoint(ckpt_file)
load_param_into_net(network, param_dict)
turns = Tensor(np.zeros([args.batch_size, args.max_turn_num, args.max_turn_len]).astype(np.int32))
every_turn_len = Tensor(np.zeros([args.batch_size, args.max_turn_num]).astype(np.int32))
response = Tensor(np.zeros([args.batch_size, args.max_turn_len]).astype(np.int32))
response_len = Tensor(np.zeros([args.batch_size, 1]).astype(np.int32))
labels = Tensor(np.zeros([args.batch_size, 1]).astype(np.int32))
input_data = [turns, every_turn_len, response, response_len, labels]
export(network, *input_data, file_name=args.model_name, file_format=args.file_format)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。