代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
DAM preprocess script.
"""
import os
import argparse
from mindspore import dataset as ds
def parse_args():
"""set and check parameters."""
parser = argparse.ArgumentParser(description="dam preprocess")
parser.add_argument('--eval_data_file_path', type=str,
default="./data/ubuntu/data_test.mindrecord",
help="evaluate data file path")
parser.add_argument("--eval_batch_size", type=int, default=200,
help="Eval batch size, default is 200, 256 for douban")
parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='result path')
args_opt = parser.parse_args()
return args_opt
if __name__ == "__main__":
args = parse_args()
dataset = ds.MindDataset(args.eval_data_file_path,
columns_list=["turns", "turn_len", "response", "response_len", "label"],
shuffle=False)
dataset = dataset.batch(batch_size=args.eval_batch_size, drop_remainder=True)
turns_path = os.path.join(args.result_path, "00_data")
turn_len_path = os.path.join(args.result_path, "01_data")
response_path = os.path.join(args.result_path, "02_data")
response_len_path = os.path.join(args.result_path, "03_data")
labels_path = os.path.join(args.result_path, "04_data")
os.makedirs(turns_path)
os.makedirs(turn_len_path)
os.makedirs(response_path)
os.makedirs(response_len_path)
os.makedirs(labels_path)
print("=" * 20, "starting export bin files", "=" * 20)
for idx, data in enumerate(dataset.create_dict_iterator(output_numpy=True)):
file_name = "cluener_bs" + str(args.eval_batch_size) + "_" + str(idx) + ".bin"
turns = data["turns"]
turn_len = data["turn_len"]
response = data["response"]
response_len = data["response_len"]
labels = data["label"]
turns_file_path = os.path.join(turns_path, file_name)
turns.tofile(turns_file_path)
turn_len_file_path = os.path.join(turn_len_path, file_name)
turn_len.tofile(turn_len_file_path)
response_file_path = os.path.join(response_path, file_name)
response.tofile(response_file_path)
response_len_file_path = os.path.join(response_len_path, file_name)
response_len.tofile(response_len_file_path)
labels_file_path = os.path.join(labels_path, file_name)
labels.tofile(labels_file_path)
print("=" * 20, "export bin files finished", "=" * 20)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。