代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""Train function"""
import os
import time
import numpy as np
import mindspore
from mindspore import nn
from mindspore import dataset as ds
from mindspore import context, Model
from mindspore import ParameterTuple
from mindspore.context import ParallelMode
from mindspore.communication.management import init
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from src.net import DAMNet, DAMNetWithLoss, DAMTrainOneStepCell, PredictWithNet
from src.callback import LossCallback, TimeMonitor, EvalCallBack
from src.metric import EvalMetric
from src import dynamic_lr as dl
from src import config as conf
device_num = int(os.getenv('RANK_SIZE'))
device_id = int(os.getenv('DEVICE_ID'))
rank_id = int(os.getenv('RANK_ID'))
print("RANK_SIZE: ", device_num)
print("DEVICE_ID: ", device_id)
print("RANK_ID: ", rank_id)
def prepare_seed(seed):
"""Set Random Seed"""
print("Random Seed: ", seed)
mindspore.set_seed(seed)
def write_args(_args, local_eval_file_name):
"""Write parameters to a file"""
args_dict = _args.__dict__
with open(local_eval_file_name, 'a+') as out_file:
out_file.write("--------------- start ---------------\n")
for eachArg, value in args_dict.items():
out_file.write(eachArg + ' : ' + str(value) + '\n')
out_file.write("---------------- end ----------------\n\n")
def mk_dir(path):
"""make dirs"""
if not os.path.exists(path):
os.makedirs(path)
def train(config):
"""Training"""
prepare_seed(config.seed)
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=device_id)
if config.modelArts:
import moxing as mox
mox.file.shift('os', 'mox')
init()
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
parameter_broadcast=True, gradients_mean=True)
shard_id = rank_id
num_shards = device_num
root = "/cache/"
obs_data_path = config.data_url
if config.model_name == "DAM_ubuntu":
local_data_path = os.path.join(root, "ubuntu_data")
local_train_path = os.path.join(root, 'dam/save_checkpoints/ubuntu')
elif config.model_name == "DAM_douban":
local_data_path = os.path.join(root, "douban_data")
local_train_path = os.path.join(root, 'dam/save_checkpoints/douban')
else:
raise RuntimeError('{} does not exist'.format(config.model_name))
local_data_path = os.path.join(local_data_path, str(device_id))
local_train_path = os.path.join(local_train_path, config.version)
mox.file.make_dirs(local_train_path)
print("############## Downloading data from OBS ##############")
mox.file.copy_parallel(src_url=obs_data_path, dst_url=local_data_path)
else:
local_data_path = config.data_root
local_train_path = config.output_path
if config.parallel:
init()
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
shard_id = rank_id
num_shards = device_num
local_train_path = os.path.join(local_train_path, str(device_id))
else:
shard_id = None
num_shards = None
mk_dir(local_train_path)
local_loss_file_name = os.path.join(local_train_path, config.loss_file_name)
local_eval_file_name = os.path.join(local_train_path, config.eval_file_name)
print("The path of loss.log:", local_loss_file_name)
print("The path of eval.log:", local_eval_file_name)
# loading training data
train_data_path = os.path.join(local_data_path, config.train_data)
print("\nStart loading train data: ", train_data_path)
train_dataset = ds.MindDataset(train_data_path,
columns_list=["turns", "turn_len", "response", "response_len", "label"],
shuffle=True, num_shards=num_shards, shard_id=shard_id)
train_dataset = train_dataset.batch(config.batch_size, drop_remainder=True)
train_dataset = train_dataset.repeat(1)
batch_num = train_dataset.get_dataset_size()
print("dataset_size: ", batch_num)
# model init
if config.emb_init is not None:
emb_init = os.path.join(local_data_path, config.emb_init)
else:
emb_init = None
dam_net = DAMNet(config, emb_init=emb_init, is_emb_init=config.is_emb_init)
iter_per_epoch = train_dataset.get_dataset_size()
total_iters = iter_per_epoch * config.epoch_size
lr = dl.exponential_decay_lr(learning_rate=config.learning_rate,
decay_rate=config.decay_rate,
decay_steps=config.decay_steps,
max_iteration=total_iters,
is_stair=True)
lr = mindspore.Tensor(np.array(lr).astype(np.float32))
train_net = DAMNetWithLoss(dam_net)
optimizer = nn.Adam(params=ParameterTuple(train_net.trainable_params()), learning_rate=lr)
train_net = DAMTrainOneStepCell(train_net, optimizer, sens=config.loss_scale)
eval_net = PredictWithNet(dam_net)
metric = EvalMetric(config.model_name)
model = Model(train_net, eval_network=eval_net, metrics={"Accuracy": metric})
# define callback
time_cb = TimeMonitor(data_size=batch_num)
loss_cb = LossCallback(loss_file_path=local_loss_file_name)
cbs = [time_cb, loss_cb]
# checkpoint save path
save_step = int(max(1, batch_num / 10))
config_ck = CheckpointConfig(save_checkpoint_steps=save_step, keep_checkpoint_max=80)
save_checkpoint_path = os.path.join(local_train_path, str(device_id))
ckpoint_cb = ModelCheckpoint(prefix="DAM", directory=save_checkpoint_path, config=config_ck)
cbs.append(ckpoint_cb)
if config.do_eval:
write_args(config, local_eval_file_name)
eval_data_path = os.path.join(local_data_path, config.eval_data)
print('\nStart loading eval data: ', eval_data_path)
eval_dataset = ds.MindDataset(eval_data_path,
columns_list=["turns", "turn_len", "response", "response_len", "label"],
shuffle=False, num_shards=None, shard_id=None)
eval_dataset = eval_dataset.batch(config.eval_batch_size, drop_remainder=True)
eval_dataset = eval_dataset.repeat(1)
print("eval_dataset.size: ", eval_dataset.get_dataset_size())
print("eval_per_steps: ", save_step)
eval_callback = EvalCallBack(model, eval_dataset, eval_per_steps=save_step, eval_file_path=local_eval_file_name)
cbs.append(eval_callback)
print("############## Start training ##############")
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
model.train(epoch=config.epoch_size, train_dataset=train_dataset, callbacks=cbs, dataset_sink_mode=False)
if config.modelArts:
obs_train_path = os.path.join(config.train_url, config.version)
mox.file.copy_parallel(src_url=local_train_path, dst_url=obs_train_path)
if __name__ == '__main__':
args = conf.parse_args()
if args.model_name == "DAM_douban":
args.vocab_size = 172130
args.channel1_dim = 16
print("args: ", args)
train(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。