Ai
107 Star 891 Fork 1.4K

MindSpore/models
暂停

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
preprocess.py 3.12 KB
一键复制 编辑 原始数据 按行查看 历史
zhaoting 提交于 2022-11-17 14:18 +08:00 . move official models
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''
Ernie preprocess script.
'''
import os
import argparse
from src.dataset import create_classification_dataset
def parse_args():
"""set and check parameters."""
parser = argparse.ArgumentParser(description="ernie preprocess")
parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
help="Enable eval data shuffle, default is false")
parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
parser.add_argument("--eval_data_file_path", type=str, default="",
help="Data path, it is better to use absolute path")
parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='result path')
args_opt = parser.parse_args()
if args_opt.eval_data_file_path == "":
raise ValueError("'eval_data_file_path' must be set when do evaluation task")
return args_opt
if __name__ == "__main__":
args = parse_args()
ds = create_classification_dataset(batch_size=args.eval_batch_size,
repeat_count=1,
data_file_path=args.eval_data_file_path,
do_shuffle=(args.eval_data_shuffle.lower() == "true"),
drop_remainder=False)
ids_path = os.path.join(args.result_path, "00_data")
mask_path = os.path.join(args.result_path, "01_data")
token_path = os.path.join(args.result_path, "02_data")
label_path = os.path.join(args.result_path, "03_data")
os.makedirs(ids_path)
os.makedirs(mask_path)
os.makedirs(token_path)
os.makedirs(label_path)
for idx, data in enumerate(ds.create_dict_iterator(output_numpy=True, num_epochs=1)):
input_ids = data["input_ids"]
input_mask = data["input_mask"]
token_type_id = data["segment_ids"]
label_ids = data["label_ids"]
file_name = "emotect_batch_" + str(args.eval_batch_size) + "_" + str(idx) + ".bin"
ids_file_path = os.path.join(ids_path, file_name)
input_ids.tofile(ids_file_path)
mask_file_path = os.path.join(mask_path, file_name)
input_mask.tofile(mask_file_path)
token_file_path = os.path.join(token_path, file_name)
token_type_id.tofile(token_file_path)
label_file_path = os.path.join(label_path, file_name)
label_ids.tofile(label_file_path)
print("=" * 20, "export bin files finished", "=" * 20)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助