代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''
Ernie finetune and evaluation script.
'''
import os
import time
import argparse
from src.ernie_for_finetune import ErnieFinetuneCell, ErnieCLS
from src.finetune_eval_config import optimizer_cfg, ernie_net_cfg
from src.dataset import create_classification_dataset
from src.assessment_method import Accuracy
from src.utils import make_directory, LossCallBack, LoadNewestCkpt, ErnieLearningRate
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore import log as logger
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.nn.optim import Adam, AdamWeightDecay, Adagrad
from mindspore.train.model import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
_cur_dir = os.getcwd()
def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
""" do train """
if load_checkpoint_path == "":
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
steps_per_epoch = 500
# optimizer
if optimizer_cfg.optimizer == 'AdamWeightDecay':
lr_schedule = ErnieLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.AdamWeightDecay.power)
params = network.trainable_params()
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
elif optimizer_cfg.optimizer == 'Adam':
optimizer = Adam(network.trainable_params(), learning_rate=optimizer_cfg.Adam.learning_rate)
elif optimizer_cfg.optimizer == 'Adagrad':
optimizer = Adagrad(network.trainable_params(), learning_rate=optimizer_cfg.Adagrad.learning_rate)
# load checkpoint into network
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=10)
ckpoint_cb = ModelCheckpoint(prefix="classifier",
directory=None if save_checkpoint_path == "" else save_checkpoint_path,
config=ckpt_config)
param_dict = load_checkpoint(load_checkpoint_path)
unloaded_params, _ = load_param_into_net(network, param_dict)
if len(unloaded_params) > 2:
print(unloaded_params)
logger.warning('Loading ernie model failed, please check the checkpoint file.')
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
netwithgrads = ErnieFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
model = Model(netwithgrads)
callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
model.train(epoch_num, dataset, callbacks=callbacks, dataset_sink_mode=True)
def do_eval(dataset=None, network=None, num_class=2, load_checkpoint_path=""):
""" do eval """
if load_checkpoint_path == "":
raise ValueError("Finetune model missed, evaluation task must load finetune model!")
net_for_pretraining = network(ernie_net_cfg, False, num_class)
net_for_pretraining.set_train(False)
param_dict = load_checkpoint(load_checkpoint_path)
load_param_into_net(net_for_pretraining, param_dict)
callback = Accuracy()
evaluate_times = []
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
for data in dataset.create_dict_iterator(num_epochs=1):
input_data = []
for i in columns_list:
input_data.append(data[i])
input_ids, input_mask, token_type_id, label_ids = input_data
time_begin = time.time()
logits = net_for_pretraining(input_ids, input_mask, token_type_id, label_ids)
time_end = time.time()
evaluate_times.append(time_end - time_begin)
callback.update(logits, label_ids)
print("==============================================================")
print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
callback.acc_num / callback.total_num))
print("(w/o first and last) elapsed time: {}, per step time : {}".format(
sum(evaluate_times[1:-1]), sum(evaluate_times[1:-1])/(len(evaluate_times) - 2)))
print("==============================================================")
def run_classifier():
"""run classifier task"""
parser = argparse.ArgumentParser(description="run classifier")
parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
help="Device type, default is Ascend")
parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"],
help="Enable train, default is false")
parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"],
help="Enable eval, default is false")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--epoch_num", type=int, default=3, help="Epoch number, default is 3.")
parser.add_argument("--num_class", type=int, default=3, help="The number of class, default is 3.")
parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"],
help="Enable train data shuffle, default is true")
parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
help="Enable eval data shuffle, default is false")
parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32")
parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
parser.add_argument("--local_pretrain_checkpoint_path", type=str, default="",
help="Local pretrain checkpoint file path")
parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
parser.add_argument("--train_data_file_path", type=str, default="",
help="Data path, it is better to use absolute path")
parser.add_argument("--eval_data_file_path", type=str, default="",
help="Data path, it is better to use absolute path")
parser.add_argument("--schema_file_path", type=str, default="",
help="Schema path, it is better to use absolute path")
parser.add_argument('--data_url', type=str, default=None, help='Dataset path for ModelArts')
parser.add_argument('--train_url', type=str, default=None, help='Train output path for ModelArts')
parser.add_argument('--modelarts', type=str, default='false',
help='train on modelarts or not, default is false')
args_opt = parser.parse_args()
epoch_num = args_opt.epoch_num
load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
if args_opt.modelarts.lower() == 'true':
import moxing as mox
mox.file.copy_parallel(args_opt.data_url, '/cache/data')
mox.file.copy_parallel(args_opt.load_pretrain_checkpoint_path, args_opt.local_pretrain_checkpoint_path)
load_pretrain_checkpoint_path = args_opt.local_pretrain_checkpoint_path
if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "true":
mox.file.copy_parallel(args_opt.save_finetune_checkpoint_path, args_opt.load_finetune_checkpoint_path)
if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
raise ValueError("'train_data_file_path' must be set when do finetune task")
if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
raise ValueError("'eval_data_file_path' must be set when do evaluation task")
target = args_opt.device_target
if target == "Ascend":
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
elif target == "GPU":
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
if ernie_net_cfg.compute_type != mstype.float32:
logger.warning('GPU only support fp32 temporarily, run with fp32.')
ernie_net_cfg.compute_type = mstype.float32
else:
raise Exception("Target error, GPU or Ascend is supported.")
netwithloss = ErnieCLS(ernie_net_cfg, True, num_labels=args_opt.num_class, dropout_prob=0.1)
if args_opt.do_train.lower() == "true":
ds = create_classification_dataset(batch_size=args_opt.train_batch_size, repeat_count=1,
data_file_path=args_opt.train_data_file_path,
schema_file_path=args_opt.schema_file_path,
do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num)
if args_opt.do_eval.lower() == "true":
if save_finetune_checkpoint_path == "":
load_finetune_checkpoint_dir = _cur_dir
else:
load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
ds.get_dataset_size(), epoch_num, "classifier")
if args_opt.do_eval.lower() == "true":
ds = create_classification_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1,
data_file_path=args_opt.eval_data_file_path,
schema_file_path=args_opt.schema_file_path,
do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"),
drop_remainder=False)
do_eval(ds, ErnieCLS, args_opt.num_class, load_finetune_checkpoint_path)
if args_opt.modelarts.lower() == 'true' and args_opt.do_train.lower() == "true":
mox.file.copy_parallel(save_finetune_checkpoint_path, args_opt.train_url)
if __name__ == "__main__":
run_classifier()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。