Ai
107 Star 891 Fork 1.4K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
postprocess.py 2.95 KB
一键复制 编辑 原始数据 按行查看 历史
zhaoting 提交于 2022-11-17 14:18 +08:00 . move official models
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation api."""
import os
import pickle
import numpy as np
from src.model_utils.config import config
from src.utils import Dictionary
from src.utils import get_score
def read_from_file():
'''
calculate accuraty.
'''
predictions = []
probs = []
source_sentences = []
target_sentences = []
file_num = len(os.listdir(config.source_id_folder))
for i in range(file_num):
f_name = "gigaword_bs_" + str(config.batch_size) + "_" + str(i)
source_ids = np.fromfile(os.path.join(config.source_id_folder, f_name + ".bin"), np.int32)
source_ids = source_ids.reshape(1, config.max_decode_length)
target_ids = np.fromfile(os.path.join(config.target_id_folder, f_name + ".bin"), np.int32)
target_ids = target_ids.reshape(1, config.max_decode_length)
predicted_ids = np.fromfile(os.path.join(config.result_dir, f_name + "_0.bin"), np.int32)
predicted_ids = predicted_ids.reshape(1, config.max_decode_length + 1)
entire_probs = np.fromfile(os.path.join(config.result_dir, f_name + "_1.bin"), np.float32)
entire_probs = entire_probs.reshape(1, config.beam_width, config.max_decode_length + 1)
source_sentences.append(source_ids)
target_sentences.append(target_ids)
predictions.append(predicted_ids)
probs.append(entire_probs)
output = []
for inputs, ref, batch_out, batch_probs in zip(source_sentences,
target_sentences,
predictions,
probs):
for i in range(config.batch_size):
if batch_out.ndim == 3:
batch_out = batch_out[:, 0]
example = {
"source": inputs[i].tolist(),
"target": ref[i].tolist(),
"prediction": batch_out[i].tolist(),
"prediction_prob": batch_probs[i].tolist()
}
output.append(example)
return output
if __name__ == '__main__':
result = read_from_file()
vocab = Dictionary.load_from_persisted_dict(config.vocab)
with open(config.output, "wb") as f:
pickle.dump(result, f, 1)
# get score by given metric
score = get_score(result, vocab, metric=config.metric)
print(score)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助