代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Transformer evaluation script."""
import json
import os
import numpy as np
from mindspore import context
from mindspore import dtype as mstype
from mindspore import nn
from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint
from mindspore.train.serialization import load_param_into_net
from tqdm import tqdm
from src.dataset import MsAudioDataset
from src.dataset import create_transformer_dataset
from src.model_utils.config import config
from src.model_utils.device_adapter import get_device_id
from src.model_utils.moxing_adapter import moxing_wrapper
from src.transformer_model import TransformerModel
config.dtype = mstype.float32
config.compute_type = mstype.float16
config.batch_size = config.batch_size_ev
config.hidden_dropout_prob = config.hidden_dropout_prob_ev
config.attention_probs_dropout_prob = config.attention_probs_dropout_prob_ev
class TransformerInferCell(nn.Cell):
"""
Encapsulation class of transformer network infer.
"""
def __init__(self, network):
super(TransformerInferCell, self).__init__(auto_prefix=False)
self.network = network
def construct(self, source_ids, source_mask):
predicted_ids = self.network(source_ids, source_mask)
return predicted_ids
def load_weights(model_path):
"""
Load checkpoint as parameter dict, support both npz file and mindspore checkpoint file.
"""
if model_path.endswith(".npz"):
ms_ckpt = np.load(model_path)
is_npz = True
else:
ms_ckpt = load_checkpoint(model_path)
is_npz = False
weights = {}
for msname in ms_ckpt:
infer_name = msname
if "tfm_decoder" in msname:
infer_name = "tfm_decoder.decoder." + infer_name
if is_npz:
weights[infer_name] = ms_ckpt[msname]
else:
weights[infer_name] = ms_ckpt[msname].data.asnumpy()
weights["tfm_decoder.decoder.tfm_embedding_lookup.embedding_table"] = \
weights["tfm_embedding_lookup.embedding_table"]
parameter_dict = {}
for name in weights:
parameter_dict[name] = Parameter(Tensor(weights[name]), name=name)
return parameter_dict
def modelarts_pre_process():
"""modelarts pre process"""
config.output_file = os.path.join(config.output_path, config.output_file)
config.data_file = os.path.join(config.data_file, config.data_file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_transformer_eval():
"""
Transformer evaluation.
"""
context.set_context(
mode=context.GRAPH_MODE,
device_target=config.device_target,
reserve_class_name_in_scope=False,
device_id=get_device_id(),
)
dataset = create_transformer_dataset(
epoch_count=1,
rank_size=1,
rank_id=0,
do_shuffle='false',
data_json_path=config.data_json_path,
chars_dict_path=config.chars_dict_path,
batch_size=config.batch_size_ev,
)
char_list, _, _ = MsAudioDataset.process_dict(config.chars_dict_path)
tfm_model = TransformerModel(config=config, is_training=False, use_one_hot_embeddings=False)
parameter_dict = load_weights(config.model_file)
load_param_into_net(tfm_model, parameter_dict)
tfm_infer = TransformerInferCell(tfm_model)
model = Model(tfm_infer)
predictions = []
target_sents = []
for batch in tqdm(dataset.create_dict_iterator(output_numpy=True, num_epochs=1), total=dataset.get_dataset_size()):
target_sents.append(batch["target_eos_ids"])
source_feats = Tensor(batch["source_eos_features"], mstype.float32)
source_mask = Tensor(batch["source_eos_mask"], mstype.int32)
predicted_ids = model.predict(source_feats, source_mask)
predictions.append(predicted_ids.asnumpy())
result_dict = dict()
sample_num = 0
for batch_out, batch_gt in zip(predictions, target_sents):
for i in range(config.batch_size):
if batch_out.ndim == 3:
batch_out = batch_out[:, 0]
predicted_tokens = [char_list[x] for x in batch_out[i].tolist()]
predict = " ".join(predicted_tokens)
gt_tokens = [char_list[x] for x in batch_gt[i].tolist() if x != -1]
gt = " ".join(gt_tokens)
result_dict[sample_num] = {
'output': predict,
'gt': gt,
}
sample_num += 1
with open(config.output_file, 'w') as file:
json.dump(result_dict, file, indent=2)
if __name__ == "__main__":
run_transformer_eval()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。