代码拉取完成,页面将自动刷新
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############test textcnn example on movie review#################
python eval.py
"""
import mindspore as ms
import mindspore.nn as nn
from mindspore.nn.metrics import Accuracy
from mindspore.train.model import Model
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id
from model_utils.config import config
from src.textcnn import TextCNN
from src.dataset import MovieReview, SST2, Subjectivity
@moxing_wrapper()
def eval_net():
'''eval net'''
if config.dataset == 'MR':
instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SUBJ':
instance = Subjectivity(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SST2':
instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
device_target = config.device_target
ms.set_context(mode=ms.GRAPH_MODE, device_target=config.device_target)
if device_target == "Ascend":
ms.set_context(device_id=get_device_id())
dataset = instance.create_test_dataset(batch_size=config.batch_size)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
net = TextCNN(vocab_len=instance.get_dict_len(), word_len=config.word_len,
num_classes=config.num_classes, vec_length=config.vec_length)
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=0.001,
weight_decay=float(config.weight_decay))
param_dict = ms.load_checkpoint(config.checkpoint_file_path)
print("load checkpoint from [{}].".format(config.checkpoint_file_path))
ms.load_param_into_net(net, param_dict)
net.set_train(False)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
acc = model.eval(dataset)
print("accuracy: ", acc)
if __name__ == '__main__':
eval_net()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。