代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
python eval_onnx.py
"""
from mindspore.nn.metrics import Accuracy
import onnxruntime as ort
from model_utils.config import config
from src.dataset import MovieReview, SST2, Subjectivity
def create_session(onnx_checkpoint_path, target_device):
if target_device == 'GPU':
providers = ['CUDAExecutionProvider']
elif target_device == 'CPU':
providers = ['CPUExecutionProvider']
else:
raise ValueError(
f'Unsupported target device {target_device}, '
f'Expected one of: "CPU", "GPU"'
)
session = ort.InferenceSession(onnx_checkpoint_path, providers=providers)
input_name = session.get_inputs()[0].name
return session, input_name
def eval_net():
'''eval net'''
if config.dataset == 'MR':
instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SUBJ':
instance = Subjectivity(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SST2':
instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
session, input_name = create_session(config.onnx_file, config.device_target)
dataset = instance.create_test_dataset(batch_size=config.batch_size)
eval_metrics = {'acc': Accuracy()}
for batch in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
y_pred = session.run(None, {input_name: batch['data']})[0]
for metric in eval_metrics.values():
metric.update(y_pred, batch['label'])
return {name: metric.eval() for name, metric in eval_metrics.items()}
if __name__ == '__main__':
results = eval_net()
for name, value in results.items():
print(f'{name}: {value:.16f}')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。