Ai
107 Star 891 Fork 1.4K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval_onnx.py 2.38 KB
一键复制 编辑 原始数据 按行查看 历史
zhaoting 提交于 2022-11-17 14:18 +08:00 . move official models
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
python eval_onnx.py
"""
from mindspore.nn.metrics import Accuracy
import onnxruntime as ort
from model_utils.config import config
from src.dataset import MovieReview, SST2, Subjectivity
def create_session(onnx_checkpoint_path, target_device):
if target_device == 'GPU':
providers = ['CUDAExecutionProvider']
elif target_device == 'CPU':
providers = ['CPUExecutionProvider']
else:
raise ValueError(
f'Unsupported target device {target_device}, '
f'Expected one of: "CPU", "GPU"'
)
session = ort.InferenceSession(onnx_checkpoint_path, providers=providers)
input_name = session.get_inputs()[0].name
return session, input_name
def eval_net():
'''eval net'''
if config.dataset == 'MR':
instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SUBJ':
instance = Subjectivity(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SST2':
instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
session, input_name = create_session(config.onnx_file, config.device_target)
dataset = instance.create_test_dataset(batch_size=config.batch_size)
eval_metrics = {'acc': Accuracy()}
for batch in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
y_pred = session.run(None, {input_name: batch['data']})[0]
for metric in eval_metrics.values():
metric.update(y_pred, batch['label'])
return {name: metric.eval() for name, metric in eval_metrics.items()}
if __name__ == '__main__':
results = eval_net()
for name, value in results.items():
print(f'{name}: {value:.16f}')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助