代码拉取完成,页面将自动刷新
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################train textcnn example on movie review########################
python train.py
"""
import os
import math
import mindspore as ms
import mindspore.nn as nn
from mindspore.nn.metrics import Accuracy
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.common import set_seed
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id, get_rank_id
from model_utils.config import config
from src.textcnn import TextCNN
from src.textcnn import SoftmaxCrossEntropyExpand, EvalCallback
from src.dataset import MovieReview, SST2, Subjectivity
set_seed(1)
def modelarts_pre_process():
config.checkpoint_path = os.path.join(config.output_path, str(get_rank_id()), config.checkpoint_path)
@moxing_wrapper(pre_process=modelarts_pre_process)
def train_net():
'''train net'''
# set context
ms.set_context(mode=ms.GRAPH_MODE, device_target=config.device_target)
ms.set_context(device_id=get_device_id())
if config.dataset == 'MR':
instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SUBJ':
instance = Subjectivity(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
if config.device_target == "GPU":
ms.set_context(enable_graph_kernel=True)
elif config.dataset == 'SST2':
instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
dataset = instance.create_train_dataset(batch_size=config.batch_size, epoch_size=config.epoch_size)
eval_dataset = instance.create_test_dataset(batch_size=config.batch_size)
batch_num = dataset.get_dataset_size()
if config.sink_size == -1:
config.sink_size = batch_num
base_lr = float(config.base_lr)
learning_rate = []
warm_up = [base_lr / math.floor(config.epoch_size / 5) * (i + 1) for _ in range(batch_num) for i in
range(math.floor(config.epoch_size / 5))]
shrink = [base_lr / (16 * (i + 1)) for _ in range(batch_num) for i in range(math.floor(config.epoch_size * 3 / 5))]
normal_run = [base_lr for _ in range(batch_num) for i in
range(config.epoch_size - math.floor(config.epoch_size / 5) - math.floor(config.epoch_size * 2 / 5))]
learning_rate = learning_rate + warm_up + normal_run + shrink
net = TextCNN(vocab_len=instance.get_dict_len(), word_len=config.word_len,
num_classes=config.num_classes, vec_length=config.vec_length)
# Continue training if set pre_trained to be True
if config.pre_trained:
param_dict = ms.load_checkpoint(config.checkpoint_path)
ms.load_param_into_net(net, param_dict)
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), \
learning_rate=learning_rate, weight_decay=float(config.weight_decay))
loss = SoftmaxCrossEntropyExpand(sparse=True)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
config_ck = CheckpointConfig(save_checkpoint_steps=config.sink_size,
keep_checkpoint_max=config.keep_checkpoint_max)
time_cb = TimeMonitor(data_size=batch_num)
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path)
ckpoint_cb = ModelCheckpoint(prefix="train_textcnn", directory=ckpt_save_dir, config=config_ck)
loss_cb = LossMonitor()
eval_callback = EvalCallback(model, eval_dataset, save_path=ckpt_save_dir)
if config.device_target == "CPU":
model.train(config.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
else:
epoch_count = config.epoch_size * batch_num // config.sink_size
model.train(epoch_count, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb, eval_callback],
sink_size=config.sink_size, dataset_sink_mode=True)
print("train success")
if __name__ == '__main__':
train_net()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。