Ai
107 Star 891 Fork 1.4K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 4.58 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################train textcnn example on movie review########################
python train.py
"""
import os
import math
import mindspore as ms
import mindspore.nn as nn
from mindspore.nn.metrics import Accuracy
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.common import set_seed
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id, get_rank_id
from model_utils.config import config
from src.textcnn import TextCNN
from src.textcnn import SoftmaxCrossEntropyExpand, EvalCallback
from src.dataset import MovieReview, SST2, Subjectivity
set_seed(1)
def modelarts_pre_process():
config.checkpoint_path = os.path.join(config.output_path, str(get_rank_id()), config.checkpoint_path)
@moxing_wrapper(pre_process=modelarts_pre_process)
def train_net():
'''train net'''
# set context
ms.set_context(mode=ms.GRAPH_MODE, device_target=config.device_target)
ms.set_context(device_id=get_device_id())
if config.dataset == 'MR':
instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
elif config.dataset == 'SUBJ':
instance = Subjectivity(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
if config.device_target == "GPU":
ms.set_context(enable_graph_kernel=True)
elif config.dataset == 'SST2':
instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
dataset = instance.create_train_dataset(batch_size=config.batch_size, epoch_size=config.epoch_size)
eval_dataset = instance.create_test_dataset(batch_size=config.batch_size)
batch_num = dataset.get_dataset_size()
if config.sink_size == -1:
config.sink_size = batch_num
base_lr = float(config.base_lr)
learning_rate = []
warm_up = [base_lr / math.floor(config.epoch_size / 5) * (i + 1) for _ in range(batch_num) for i in
range(math.floor(config.epoch_size / 5))]
shrink = [base_lr / (16 * (i + 1)) for _ in range(batch_num) for i in range(math.floor(config.epoch_size * 3 / 5))]
normal_run = [base_lr for _ in range(batch_num) for i in
range(config.epoch_size - math.floor(config.epoch_size / 5) - math.floor(config.epoch_size * 2 / 5))]
learning_rate = learning_rate + warm_up + normal_run + shrink
net = TextCNN(vocab_len=instance.get_dict_len(), word_len=config.word_len,
num_classes=config.num_classes, vec_length=config.vec_length)
# Continue training if set pre_trained to be True
if config.pre_trained:
param_dict = ms.load_checkpoint(config.checkpoint_path)
ms.load_param_into_net(net, param_dict)
opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), \
learning_rate=learning_rate, weight_decay=float(config.weight_decay))
loss = SoftmaxCrossEntropyExpand(sparse=True)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
config_ck = CheckpointConfig(save_checkpoint_steps=config.sink_size,
keep_checkpoint_max=config.keep_checkpoint_max)
time_cb = TimeMonitor(data_size=batch_num)
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path)
ckpoint_cb = ModelCheckpoint(prefix="train_textcnn", directory=ckpt_save_dir, config=config_ck)
loss_cb = LossMonitor()
eval_callback = EvalCallback(model, eval_dataset, save_path=ckpt_save_dir)
if config.device_target == "CPU":
model.train(config.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
else:
epoch_count = config.epoch_size * batch_num // config.sink_size
model.train(epoch_count, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb, eval_callback],
sink_size=config.sink_size, dataset_sink_mode=True)
print("train success")
if __name__ == '__main__':
train_net()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
master

搜索帮助