代码拉取完成,页面将自动刷新
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""model train script"""
import os
import shutil
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.common import set_seed
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from src.dataset import create_dataset
from src.dataset import convert_to_mindrecord
from src.textrcnn import textrcnn
from src.utils import get_lr
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.config import config as cfg
from src.model_utils.device_adapter import get_device_id
set_seed(2)
def modelarts_pre_process():
'''modelarts pre process function.'''
cfg.ckpt_folder_path = os.path.join(cfg.output_path, cfg.ckpt_folder_path)
cfg.preprocess_path = cfg.data_path
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_train():
'''train function.'''
context.set_context(
mode=context.GRAPH_MODE,
save_graphs=False,
device_target=cfg.device_target)
device_id = get_device_id()
context.set_context(device_id=device_id)
if cfg.device_target == "GPU":
context.set_context(enable_graph_kernel=True)
if cfg.preprocess == 'true':
print("============== Starting Data Pre-processing ==============")
if os.path.exists(cfg.preprocess_path):
shutil.rmtree(cfg.preprocess_path)
os.mkdir(cfg.preprocess_path)
convert_to_mindrecord(cfg.embed_size, cfg.data_root, cfg.preprocess_path, cfg.emb_path)
if cfg.cell == "vanilla":
print("============ Precision is lower than expected when using vanilla RNN architecture ===========")
embedding_table = np.loadtxt(os.path.join(cfg.preprocess_path, "weight.txt")).astype(np.float32)
network = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0],
cell=cfg.cell, batch_size=cfg.batch_size)
ds_train = create_dataset(cfg.preprocess_path, cfg.batch_size, True)
step_size = ds_train.get_dataset_size()
cfg.loss_scale = cfg.loss_scale if cfg.cell == "lstm" and cfg.device_target == "GPU" else 1.0
loss_scale = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=True)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
lr = get_lr(cfg, step_size)
num_epochs = cfg.num_epochs
if cfg.cell == "lstm":
num_epochs = cfg.lstm_num_epochs
opt = nn.Adam(params=network.trainable_params(), learning_rate=lr, loss_scale=cfg.loss_scale)
loss_cb = LossMonitor()
time_cb = TimeMonitor()
if cfg.cell == "lstm" and cfg.device_target == "GPU":
model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()}, amp_level="O3",
loss_scale_manager=loss_scale)
else:
model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()}, amp_level="O3")
print("============== Starting Training ==============")
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix=cfg.cell, directory=cfg.ckpt_folder_path, config=config_ck)
model.train(num_epochs, ds_train, callbacks=[ckpoint_cb, loss_cb, time_cb], dataset_sink_mode=True)
print("train success")
if __name__ == '__main__':
run_train()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。