代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""preprocess"""
import os
import argparse
import numpy as np
from src.dataset import create_tinybert_dataset, DataType
parser = argparse.ArgumentParser(description='preprocess')
parser.add_argument("--eval_data_dir", type=str, default="", help="Data path, it is better to use absolute path")
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
parser.add_argument("--dataset_type", type=str, default="tfrecord",
help="dataset type tfrecord/mindrecord, default is tfrecord")
parser.add_argument("--result_path", type=str, default="./preprocess_Result/", help="result path")
args_opt = parser.parse_args()
BATCH_SIZE = 32
if args_opt.dataset_type == "tfrecord":
dataset_type = DataType.TFRECORD
elif args_opt.dataset_type == "mindrecord":
dataset_type = DataType.MINDRECORD
else:
raise Exception("dataset format is not supported yet")
def get_bin():
"""
generate bin files.
"""
input_ids_path = os.path.join(args_opt.result_path, "00_input_ids")
token_type_id_path = os.path.join(args_opt.result_path, "01_token_type_id")
input_mask_path = os.path.join(args_opt.result_path, "02_input_mask")
label_ids_path = os.path.join(args_opt.result_path, "label_ids.npy")
os.makedirs(input_ids_path)
os.makedirs(token_type_id_path)
os.makedirs(input_mask_path)
eval_dataset = create_tinybert_dataset('td', batch_size=BATCH_SIZE,
device_num=1, rank=0, do_shuffle="false",
data_dir=args_opt.eval_data_dir,
schema_dir=args_opt.schema_dir,
data_type=dataset_type)
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
label_list = []
for j, data in enumerate(eval_dataset.create_dict_iterator(output_numpy=True, num_epochs=1)):
file_name = "tinybert_bs" + str(BATCH_SIZE) + "_" + str(j) + ".bin"
input_data = []
for i in columns_list:
input_data.append(data[i])
input_ids, input_mask, token_type_id, label_ids = input_data
input_ids.tofile(os.path.join(input_ids_path, file_name))
input_mask.tofile(os.path.join(input_mask_path, file_name))
token_type_id.tofile(os.path.join(token_type_id_path, file_name))
label_list.append(label_ids)
np.save(label_ids_path, label_list)
print("=" * 20, 'export files finished', "=" * 20)
if __name__ == '__main__':
get_bin()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。