108 Star 867 Fork 1.5K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval.py 8.09 KB
一键复制 编辑 原始数据 按行查看 历史
zhaoting 提交于 2年前 . move official models
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for FasterRcnn"""
import os
import time
from collections import defaultdict
import numpy as np
from pycocotools.coco import COCO
import mindspore as ms
from mindspore.common import set_seed, Parameter
from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset, parse_json_annos_from_txt
from src.util import coco_eval, bbox2result_1image, results2json
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_device_id
from src.FasterRcnn.faster_rcnn import Faster_Rcnn
ms.context.set_context(max_call_depth=2000)
def fasterrcnn_eval(dataset_path, ckpt_path, anno_path):
"""FasterRcnn evaluation."""
if not os.path.isfile(ckpt_path):
raise RuntimeError("CheckPoint file {} is not valid.".format(ckpt_path))
ds = create_fasterrcnn_dataset(config, dataset_path, batch_size=config.test_batch_size, is_training=False)
net = Faster_Rcnn(config)
try:
param_dict = ms.load_checkpoint(ckpt_path)
except RuntimeError as ex:
ex = str(ex)
print("Traceback:\n", ex, flush=True)
if "reg_scores.weight" in ex:
exit("[ERROR] The loss calculation of faster_rcnn has been updated. "
"If the training is on an old version, please set `without_bg_loss` to False.")
# in previous version of code there was a typo in layer name 'fpn_neck': it was 'fpn_ncek'
# in order to make backward compatibility with checkpoints created with that typo
# we need to manually check and rename that layer in param_dict
for key, value in param_dict.items():
if key.startswith('fpn_ncek'):
new_key = key.replace('fpn_ncek', 'fpn_neck')
param_dict[new_key] = param_dict.pop(key)
print(f"param_dict fixed typo: {key} renamed to {new_key}")
if config.device_target == "GPU":
for key, value in param_dict.items():
tensor = value.asnumpy().astype(np.float32)
param_dict[key] = Parameter(tensor, key)
ms.load_param_into_net(net, param_dict)
net.set_train(False)
device_type = "Ascend" if ms.get_context("device_target") == "Ascend" else "Others"
if device_type == "Ascend":
net.to_float(ms.float16)
eval_iter = 0
total = ds.get_dataset_size()
outputs = []
if config.dataset != "coco":
dataset_coco = COCO()
dataset_coco.dataset, dataset_coco.anns, dataset_coco.cats, dataset_coco.imgs = dict(), dict(), dict(), dict()
dataset_coco.imgToAnns, dataset_coco.catToImgs = defaultdict(list), defaultdict(list)
dataset_coco.dataset = parse_json_annos_from_txt(anno_path, config)
dataset_coco.createIndex()
else:
dataset_coco = COCO(anno_path)
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
max_num = config.num_gts
for data in ds.create_dict_iterator(num_epochs=1):
eval_iter = eval_iter + 1
img_data = data['image']
img_metas = data['image_shape']
gt_bboxes = data['box']
gt_labels = data['label']
gt_num = data['valid_num']
start = time.time()
# run net
output = net(img_data, img_metas, gt_bboxes, gt_labels, gt_num)
end = time.time()
print("Iter {} cost time {}".format(eval_iter, end - start))
# output
all_bbox = output[0]
all_label = output[1]
all_mask = output[2]
for j in range(config.test_batch_size):
all_bbox_squee = np.squeeze(all_bbox.asnumpy()[j, :, :])
all_label_squee = np.squeeze(all_label.asnumpy()[j, :, :])
all_mask_squee = np.squeeze(all_mask.asnumpy()[j, :, :])
all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :]
all_labels_tmp_mask = all_label_squee[all_mask_squee]
if all_bboxes_tmp_mask.shape[0] > max_num:
inds = np.argsort(-all_bboxes_tmp_mask[:, -1])
inds = inds[:max_num]
all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds]
all_labels_tmp_mask = all_labels_tmp_mask[inds]
outputs_tmp = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes)
outputs.append(outputs_tmp)
eval_types = ["bbox"]
result_files = results2json(dataset_coco, outputs, "./results.pkl")
coco_eval(config, result_files, eval_types, dataset_coco,
single_result=False, plot_detect_result=True)
print("\nEvaluation done!")
def modelarts_pre_process():
pass
@moxing_wrapper(pre_process=modelarts_pre_process)
def eval_fasterrcnn():
""" eval_fasterrcnn """
prefix = "FasterRcnn_eval.mindrecord"
mindrecord_dir = config.mindrecord_dir
mindrecord_file = os.path.join(mindrecord_dir, prefix)
print("CHECKING MINDRECORD FILES ...")
if not os.path.exists(mindrecord_file):
if not os.path.isdir(mindrecord_dir):
os.makedirs(mindrecord_dir)
if config.dataset == "coco":
if os.path.isdir(config.coco_root):
print("Create Mindrecord. It may take some time.")
data_to_mindrecord_byte_image(config, "coco", False, prefix, file_num=1)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("coco_root not exits.")
else:
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
print("Create Mindrecord. It may take some time.")
data_to_mindrecord_byte_image(config, "other", False, prefix, file_num=1)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("IMAGE_DIR or ANNO_PATH not exits.")
print("CHECKING MINDRECORD FILES DONE!")
print("Start Eval!")
start_time = time.time()
fasterrcnn_eval(mindrecord_file, config.checkpoint_path, config.anno_path)
end_time = time.time()
total_time = end_time - start_time
print("\nDone!\nTime taken: {:.2f} seconds".format(total_time))
flags = [0] * 3
config.eval_result_path = os.path.abspath("./eval_result")
if os.path.exists(config.eval_result_path):
result_files = os.listdir(config.eval_result_path)
for file in result_files:
if file == "statistics.csv":
with open(os.path.join(config.eval_result_path, "statistics.csv"), "r") as f:
res = f.readlines()
if len(res) > 1:
if "class_name" in res[3] and "tp_num" in res[3] and len(res[4].strip().split(",")) > 1:
flags[0] = 1
elif file in ("precision_ng_images", "recall_ng_images", "ok_images"):
imgs = os.listdir(os.path.join(config.eval_result_path, file))
if imgs:
flags[1] = 1
elif file == "pr_curve_image":
imgs = os.listdir(os.path.join(config.eval_result_path, "pr_curve_image"))
if imgs:
flags[2] = 1
else:
pass
if sum(flags) == 3:
print("Successfully created 'eval_results' visualizations")
exit(0)
else:
print("Failed to create 'eval_results' visualizations")
exit(-1)
if __name__ == '__main__':
set_seed(1)
ms.set_context(mode=ms.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
eval_fasterrcnn()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
r2.0

搜索帮助