代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""EXPORT ONNX MODEL WITH CKPT MODEL BASED ON MINDSPORE"""
from __future__ import print_function
import numpy as np
import mindspore
from mindspore import Tensor, export
from src.network import RetinaFace, resnet50
from src.config import cfg_res50
def export_ONNX_model():
cfg = cfg_res50
mindspore.set_context(mode=0, device_target=cfg.get('device'))
# build network
backbone = resnet50(1001)
network = RetinaFace(phase='predict', backbone=backbone)
backbone.set_train(False)
network.set_train(False)
# load checkpoint into network
param_dict = mindspore.load_checkpoint(cfg['ckpt_model'])
network.init_parameters_data()
mindspore.load_param_into_net(network, param_dict)
# build input data
input_data = Tensor(np.ones([1, 3, 2176, 2176]).astype(np.float32))
# export onnx model
print("Begin to Export ONNX Model...")
export(network, input_data, file_name='retinaface', file_format='ONNX')
print("Export ONNX Model Successfully!")
if __name__ == '__main__':
export_ONNX_model()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。