108 Star 885 Fork 1.5K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval.py 2.77 KB
一键复制 编辑 原始数据 按行查看 历史
zhaoting 提交于 2022-11-17 14:18 +08:00 . move official models
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# you may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0#
#
# Unless required by applicable law or agreed to in writing software
# distributed under the License is distributed on an "AS IS" BASIS
# WITHOUT WARRANT IES OR CONITTONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ====================================================================================
"""Parse arguments"""
from mindspore import Model, context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.deep_and_cross import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, DeepCrossModel
from src.callbacks import EvalCallBack
from src.datasets import create_dataset, DataType
from src.metrics import AUCMetric
from src.config import DeepCrossConfig
def get_DCN_net(configure):
"""
Get network of deep&cross model.
"""
DCN_net = DeepCrossModel(configure)
loss_net = NetWithLossClass(DCN_net)
train_net = TrainStepWrap(loss_net)
eval_net = PredictWithSigmoid(DCN_net)
return train_net, eval_net
class ModelBuilder():
"""
Build the model.
"""
def __init__(self):
pass
def get_hook(self):
pass
def get_net(self, configure):
return get_DCN_net(configure)
def test_eval(configure):
"""
test_eval
"""
data_path = configure.data_path
batch_size = configure.batch_size
field_size = configure.field_size
if configure.dataset_type == "tfrecord":
dataset_type = DataType.TFRECORD
elif configure.dataset_type == "mindrecord":
dataset_type = DataType.MINDRECORD
else:
dataset_type = DataType.H5
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,
batch_size=batch_size, data_type=dataset_type, target_column=field_size+1)
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
net_builder = ModelBuilder()
train_net, eval_net = net_builder.get_net(configure)
ckpt_path = configure.ckpt_path
param_dict = load_checkpoint(ckpt_path)
load_param_into_net(eval_net, param_dict)
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
eval_callback = EvalCallBack(model, ds_eval, auc_metric, configure)
model.eval(ds_eval, callbacks=eval_callback)
if __name__ == "__main__":
config = DeepCrossConfig()
config.argparse_init()
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
test_eval(config)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
r2.3

搜索帮助