代码拉取完成,页面将自动刷新
# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
# Copyright 2025 Huawei Technologies Co., Ltd.
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# type: ignore
# isort:skip_file
from typing import (TYPE_CHECKING, Optional, Union)
from collections.abc import Iterable
if TYPE_CHECKING:
from transformers import Qwen2Config
else:
Qwen2Config = None
from mindspore import Parameter, Tensor, mint, nn
from vllm.attention.backends.abstract import AttentionType
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.models.interfaces import SupportsLoRA
from vllm.sequence import IntermediateTensors
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm_mindspore.attention import Attention
from vllm_mindspore.model_executor.layers.activation import SiluAndMul
from vllm_mindspore.model_executor.layers.layernorm import RMSNorm
from vllm_mindspore.model_executor.layers.linear import (
MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear)
from vllm_mindspore.model_executor.layers.logits_processor import \
LogitsProcessor
from vllm_mindspore.model_executor.layers.rotary_embedding import get_rope
from vllm_mindspore.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm_mindspore.model_executor.model_loader.weight_utils import \
default_weight_loader
from vllm_mindspore.model_executor.models.model_base import (NativeModel)
from vllm_mindspore.model_executor.models.utils import (
PPMissingLayer, make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class Qwen2MLP(nn.Cell):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config=None,
bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj")
self.down_proj = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj")
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def construct(self, x):
x, _ = self.gate_up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
class Qwen2Attention(nn.Cell):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
rope_scaling: Optional[tuple] = None,
prefix: str = "",
attn_type: str = AttentionType.DECODER) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
head_size=self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=self.rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
attn_type=attn_type)
def construct(
self,
positions: Tensor,
hidden_states: Tensor,
key_cache: Tensor,
value_cache: Tensor,
slot_mapping: Tensor,
attn_mask: Tensor,
batch_valid_length: Tensor,
q_seq_lens: Tensor,
block_tables: Tensor,
) -> Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = mint.split(qkv, (self.q_size, self.kv_size, self.kv_size),
-1)
q, k = self.rotary_emb(positions, q, k, batch_valid_length)
attn_output = self.attn(q, k, v, key_cache, value_cache, slot_mapping,
attn_mask, batch_valid_length, q_seq_lens,
block_tables)
output, _ = self.o_proj(attn_output)
return output
class Qwen2DecoderLayer(nn.Cell):
def __init__(
self,
config: Qwen2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 1000000)
rope_scaling = getattr(config, "rope_scaling", None)
# By default, Qwen2 uses causal attention as it is a decoder-only model.
# You can override the HF config with `is_causal=False` to enable
# bidirectional attention, which is used in some embedding models
# (e.g. Alibaba-NLP/gte-Qwen2-7B-instruct)
if getattr(config, "is_causal", True):
attn_type = AttentionType.DECODER
else:
attn_type = AttentionType.ENCODER_ONLY
self.self_attn = Qwen2Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position=config.max_position_embeddings,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
rope_scaling=rope_scaling,
prefix=f"{prefix}.self_attn",
attn_type=attn_type,
)
self.mlp = Qwen2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.post_attention_layernorm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
def construct(
self,
positions: Tensor,
hidden_states: Tensor,
key_cache: Tensor,
value_cache: Tensor,
slot_mapping: Tensor,
attn_mask: Tensor,
batch_valid_length: Tensor,
q_seq_lens: Tensor,
block_tables: Tensor,
residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(positions, hidden_states, key_cache,
value_cache, slot_mapping, attn_mask,
batch_valid_length, q_seq_lens,
block_tables)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class Qwen2Model(nn.Cell):
def __init__(self,
*,
vllm_config: VllmConfig,
prefix: str = "",
decoder_layer_type: type[nn.Cell] = Qwen2DecoderLayer):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank or (config.tie_word_embeddings
and get_pp_group().is_last_rank):
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens",
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: decoder_layer_type(config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix),
prefix=f"{prefix}.layers",
)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
def get_input_embeddings(self, input_ids: Tensor) -> Tensor:
return self.embed_tokens(input_ids)
def construct(
self,
input_ids: Optional[Tensor],
positions: Tensor,
key_caches: list[Tensor],
value_caches: list[Tensor],
slot_mapping: Tensor,
attn_mask: Tensor,
batch_valid_length: Tensor,
q_seq_lens: Tensor,
block_tables: Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(positions, hidden_states,
key_caches[i - self.start_layer],
value_caches[i - self.start_layer],
slot_mapping, attn_mask,
batch_valid_length, q_seq_lens,
block_tables, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, Tensor]],
params_dict: dict[str, Parameter]):
loaded_params: set[str] = set()
stacked_params_mapping = [
# (param_name, shard_name, shard_id) # noqa: ERA001
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if name in params_dict:
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
loaded_params.add(name)
break
else:
if name in params_dict:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Qwen2ForCausalLM(NativeModel, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
]
embedding_modules = {}
embedding_padding_modules = []
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.model = Qwen2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if get_pp_group().is_last_rank:
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(
prefix, "lm_head"))
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(self.config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
self.common_preprocess(vllm_config, prefix)
def forward(self,
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: IntermediateTensors = None,
inputs_embeds: Tensor = None,
**kwargs) -> Union[Tensor, IntermediateTensors]:
hidden_states = self.exec_model(input_ids, positions,
intermediate_tensors, inputs_embeds)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, Tensor]]) -> set[str]:
params_dict = self.get_params_dict()
self.model.load_weights(weights, params_dict)
def compute_logits(
self,
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。