Native operations for nd4j. Build using cmake
There's few additional arguments for buildnativeoperations.sh
script you could use:
-a XXXXXXXX// shortcut for -march/-mtune, i.e. -a native
-b release OR -b debug // enables/desables debug builds. release is considered by default
-j XX // this argument defines how many threads will be used to binaries on your box. i.e. -j 8
-cc XX// CUDA-only argument, builds only binaries for target GPU architecture. use this for fast builds
--check-vectorization auto-vectorization report for developers. (Currently, only GCC is supported)
More about AutoVectorization report
You can provide the compute capability for your card on the NVIDIA website here or use auto.
Please also check your Cuda Toolkit Release notes for supported and dropped features.
Here is the latest CUDA Toolkit Release note.
You can find the same information for the older Toolkit versions in the CUDA archives.
-cc and --compute option examples | description |
---|---|
-cc all | builds for common GPUs |
-cc auto | tries to detect automatically |
-cc Maxwell | GPU microarchitecture codename |
-cc 75 | compute capability 7.5 without a dot |
-cc 7.5 | compute capability 7.5 with a dot |
-cc "Maxwell 6.0 7.5" | space-separated multiple arguments within quotes (note: numbers only with a dot) |
Download the NDK, extract it somewhere, and execute the following commands, replacing android-xxx
with either android-arm
or android-x86
:
git clone https://github.com/eclipse/deeplearning4j
export ANDROID_NDK=/path/to/android-ndk/
cd deeplearning4j/libnd4j
bash buildnativeoperations.sh -platform android-xxx
cd ../nd4j
mvn clean install -Djavacpp.platform=android-xxx -DskipTests -pl '!:nd4j-cuda-9.0,!:nd4j-cuda-9.0-platform,!:nd4j-tests'
Run ./setuposx.sh (Please ensure you have brew installed)
wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo apt-get install cmake
sudo apt-get install gcc-4.9
sudo apt-get install g++-4.9
sudo apt-get install git
git clone https://github.com/deeplearning4j/libnd4j
cd libnd4j/
export LIBND4J_HOME=~/libnd4j/
sudo rm /usr/bin/gcc
sudo rm /usr/bin/g++
sudo ln -s /usr/bin/gcc-4.9 /usr/bin/gcc
sudo ln -s /usr/bin/g++-4.9 /usr/bin/g++
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
sudo apt install cmake
sudo apt install nvidia-cuda-dev nvidia-cuda-toolkit nvidia-361
export TRICK_NVCC=YES
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
The standard development headers are needed.
yum install centos-release-scl-rh epel-release
yum install devtoolset-3-toolchain maven30 cmake3 git
scl enable devtoolset-3 maven30 bash
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
See Windows.md
Set a LIBND4J_HOME as an environment variable to the libnd4j folder you've obtained from GIT
Setup cpu followed by gpu, run the following on the command line:
For standard builds:
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
For Debug builds:
./buildnativeoperations.sh blas -b debug
./buildnativeoperations.sh blas -c cuda -сс YOUR_DEVICE_ARCH -b debug
For release builds (default):
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
OpenMP 4.0+ should be used to compile libnd4j. However, this shouldn't be any trouble, since OpenMP 4 was released in 2015 and should be available on all major platforms.
We can link with MKL either at build time, or at runtime with binaries initially linked with another BLAS implementation such as OpenBLAS. In either case, simply add the path containing libmkl_rt.so
(or mkl_rt.dll
on Windows), say /path/to/intel64/lib/
, to the LD_LIBRARY_PATH
environment variable on Linux (or PATH
on Windows), and build or run your Java application as usual. If you get an error message like undefined symbol: omp_get_num_procs
, it probably means that libiomp5.so
, libiomp5.dylib
, or libiomp5md.dll
is not present on your system. In that case though, it is still possible to use the GNU version of OpenMP by setting these environment variables on Linux, for example:
export MKL_THREADING_LAYER=GNU
export LD_PRELOAD=/usr/lib64/libgomp.so.1
##Troubleshooting MKL
Sometimes the above steps might not be all you need to do. Another additional step might be the need to add:
export LD_LIBRARY_PATH=/opt/intel/lib/intel64/:/opt/intel/mkl/lib/intel64
This ensures that mkl will be found first and liked to.
If on Ubuntu (14.04 or above) or CentOS (6 or above), this repository is also set to create packages for your distribution. Let's assume you have built:
./buildnativeoperations.sh ...
:cd blasbuild/cpu
make package
./buildnativeoperations.sh -c cuda ...
:cd blasbuild/cuda
make package
Tests are written with gtest, run using cmake. Tests are currently under tests_cpu/
There are 2 directories for running tests:
1. libnd4j_tests: These are older legacy ops tests.
2. layers_tests: This covers the newer graph operations and ops associated with samediff.
For running the tests, we currently use cmake or CLion to run the tests.
To run tests using CUDA backend it's pretty much similar process:
1. ./buildnativeoperations.h -c cuda -cc <YOUR_ARCH> -b debug -t -j <NUMBER_OF_CORES>
2. ./blasbuild/cuda/tests_cpu/layers_tests/runtests (.exe on Windows)
In order to extend and update libnd4j, understanding libnd4j's various cmake flags is the key. Many of them are in buildnativeoperations.sh. The pom.xml is used to integrate and auto configure the project for building with deeplearning4j.
At a minimum, you will want to enable tests. An example default set of flags for running tests and getting cpu builds working is as follows:
-DSD_CPU=true -DBLAS=TRUE -DSD_ARCH=x86-64 -DSD_EXTENSION= -DSD_LIBRARY_NAME=nd4jcpu -DSD_CHECK_VECTORIZATION=OFF -DSD_SHARED_LIB=ON -DSD_STATIC_LIB=OFF -DSD_BUILD_MINIFIER=false -DSD_ALL_OPS=true -DCMAKE_BUILD_TYPE=Release -DPACKAGING=none -DSD_BUILD_TESTS=OFF -DCOMPUTE=all -DOPENBLAS_PATH=C:/Users/agibs/.javacpp/cache/openblas-0.3.10-1.5.4-windows-x86_64.jar/org/bytedeco/openblas/windows-x86_64 -DDEV=FALSE -DCMAKE_NEED_RESPONSE=YES -DMKL_MULTI_THREADED=TRUE -DSD_BUILD_TESTS=YES
The way the main build script works, it dynamically generates a set of flags suitable for use for building the projects. Understanding the build script will go a long way in to configuring cmake for your particular IDE.
This document presents an overview of two key configuration files: CMakeSettings.json
and CMakePresets.json
, used in building the libnd4j C++ library.
CMakeSettings.json
CMakeSettings.json
provides project configurations for building the libnd4j C++ library with CMake in an IDE.
x64-Debug and x64-Release
msvc_x64_x64
).nd4jcuda
WSL-GCC-Debug
-DSD_ALL_OPS=true
)nd4jcpu
CMakePresets.json
CMakePresets.json
defines presets for the configure, build, and test steps. Each preset can be selected based on the specific needs of the user.
Presets for building the project after configuration, specifying the number of parallel jobs to run during the build process.
Presets for testing the project after building. They inherit the configuration from the configure presets, ensuring that the testing environment matches the build environment.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。