4 Star 4 Fork 1

Gitee 极速下载/sqlite-zstd

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/phiresky/sqlite-zstd
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
LGPL-3.0

sqlite-zstd

Extension for sqlite that provides transparent dictionary-based row-level compression for sqlite. This basically allows you to compress entries in a sqlite database almost as well as if you were compressing the whole DB file, but while retaining random access.

See also the announcement blog post for some motivation, benchmarks and ramblings: https://phiresky.github.io/blog/2022/sqlite-zstd

size comparison chart

Depending on the data, this can reduce the size of the database by 80% while keeping performance mostly the same (or even improving it, since the data to be read from disk is smaller).

Note that a compression VFS such as https://github.com/mlin/sqlite_zstd_vfs might be suited better depending on the use case. That has very different tradeoffs and capabilities, but the end result is similar.

Transparent Compression

  • zstd_enable_transparent(config)

    Enable transparent row-level compression of the given column on the given table.

    You can call this function several times on the same table with different columns to compress.

        SELECT
            zstd_enable_transparent('{"table": "objects", "column": "data1", "compression_level": 19, "dict_chooser": "''a''"}'),
            zstd_enable_transparent('{"table": "objects", "column": "data2", "compression_level": 19, "dict_chooser": "''a''"}')
    
    

    The data will be moved to _table_name_zstd, while table_name will be a view that can be queried as normally, including SELECT, INSERT, UPDATE, and DELETE queries. This function will not compress any data by itself, you need to call zstd_incremental_maintenance afterwards.

    config is a json object describing the configuration. See TransparentCompressConfig for detail.

    The following differences apply when compression is active:

    • The compressed column may only contain blob or text data, depending on the affinity of the declared data type (e.g. VARCHAR(10) is fine, but int is not).
    • The primary key must not be null for any row, otherwise updating may not work as expected
    • sqlite3_changes() will return 0 for modifying queries (see here).
    • The SQLite streaming blob reading API will be somewhat useless since the blob is fully copied into memory anyways.
    • Attaching a database containing compressed tables using ATTACH 'foo.db' is not supported.
    • DDL statements (like ALTER TABLE and CREATE INDEX) are only partially supported
  • zstd_incremental_maintenance(duration_seconds: float | null, db_load: float) -> bool

    Perform an incremental maintenance operation taking around the given amount of time. This will train dictionaries and compress data based on the grouping given in the TransparentCompressConfig.

    In order for the size of your database file to actually shrink, you also have to call "VACUUM". Otherwise SQLite just marks pages as free (and reuses them for new data).

    duration_seconds: If given amount of time is 0, do a single step and exit as soon as possible. If given amount of time is null, run until all pending maintenance is complete.

    db_load: specifies the ratio of time the db will be locked with write queries. For example: if set to 0.5, after each write operation taking 2 seconds the maintenance function will sleep for 2 seconds so other processes have time to run write operations against the database. If set to 1, the maintenance will not sleep. Note that this is only useful if you run the incremental maintenance function in a separate thread or process than your other logic. Note that both the duration and the db load are best-effort: there is no exact guarantee about the amount of time the database will stay locked at a time.

    Returns 1 if there is more work to be done, 0 if everything is compressed as it should.

    Note that each call of this function has a start up time cost equivalent to select * from table where dictid is null, so longer durations are more efficient.

    This function can safely be interrupted at any time, each chunk of compression work is done as an atomic operation.

    Examples:

    • zstd_incremental_maintenance(null, 1): Compresses everying, as fast as possible. Useful if the db is not currently in use.
    • zstd_incremental_maintenance(60, 0.5): Spend 60 seconds compressing pending stuff, while allowing other queries to run 50% of the time.

    Example output:

    sqlite> select zstd_incremental_maintenance(null, 1);
      [2020-12-23T21:11:31Z WARN  sqlite_zstd::transparent] Warning: It is recommended to set `pragma busy_timeout=2000;` or higher
      [2020-12-23T21:11:40Z INFO  sqlite_zstd::transparent] events.data: Total 5.20GB to potentially compress.
      3[2020-12-23T21:13:22Z INFO  sqlite_zstd::transparent] Compressed 6730 rows with dictid=109. Total size of entries before: 163.77MB, afterwards: 2.12MB, (average: before=24.33kB, after=315B)
      [2020-12-23T21:13:43Z INFO  sqlite_zstd::transparent] Compressed 4505 rows with dictid=110. Total size of entries before: 69.28MB, afterwards: 1.60MB, (average: before=15.38kB, after=355B)
      [2020-12-23T21:14:06Z INFO  sqlite_zstd::transparent] Compressed 5228 rows with dictid=111. Total size of entries before: 91.97MB, afterwards: 1.41MB, (average: before=17.59kB, after=268B)
    
  • zstd_train_dict_and_save(agg, dict_size: int, sample_count: int, dict_chooser_key: text) -> int

    This function is used internally by zstd_incremental_maintenance. Same as zstd_train_dict, but the dictionary is saved to the _zstd_dicts table and the id is returned. The dict_chooser_key is used to identify the dictionary during compression, but during decompression only the integer primary key is used (that way changing the dict chooser expression is safe).

Basic Functionality

  • zstd_compress(data: text|blob, level: int = 3, dictionary: blob | int | null = null, compact: bool = false) -> blob

    Compresses the given data, with the compression level (1 - 22, default 3)

    • If dictionary is a blob it will be directly used
    • If dictionary is an int i, it is functionally equivalent to zstd_compress(data, level, (select dict from _zstd_dict where id = i))
    • If dictionary is not present, null, or -1, the data is compressed without a dictionary.

    if compact is true, the output will be without magic header, without checksums, and without dictids. This will save 4 bytes when not using dictionaries and 8 bytes when using dictionaries. this also means the data will not be decodeable as a normal zstd archive with the standard tools. The same compact argument must also be passed to the decompress function.

  • zstd_decompress(data: blob, is_text: bool, dictionary: blob | int | null = null, compact: bool = false) -> text|blob

    Decompresses the given data. if the dictionary is wrong, the result is undefined

    • If dictionary is a blob it will be directly used
    • If dictionary is an int i, it is functionally equivalent to zstd_decompress(data, (select dict from _zstd_dict where id = i)).
    • If dictionary is not present, null, or -1, it is assumed the data was compressed without a dictionary.

    Note that passing dictionary as an int is recommended, since then the dictionary only has to be prepared once.

    is_text specifies whether to output the data as text or as a blob. Note that when outputting as text the encoding depends on the sqlite database encoding. sqlite-zstd is only tested with UTF-8.

    compact must be specified when the compress function was also called with compact.

  • zstd_train_dict(agg, dict_size: int, sample_count: int) -> blob

    Aggregate function (like sum() or count()) to train a zstd dictionary on randomly selected sample_count samples of the given aggregate data

    Example use: select zstd_train_dict(tbl.data, 100000, 1000) from tbl will return a dictionary of size 100kB trained on 1000 random samples in tbl

    The recommended number of samples is 100x the target dictionary size. As an example, you can train a dict of 100kB with the "optimal" sample count as follows:

    select zstd_train_dict(data, 100000, (select (100000 * 100 / avg(length(data))) as sample_count from tbl))
                    as dict from tbl
    

    Note that dict_size and sample_count are assumed to be constants.

Compiling

This project can be built in two modes: (a) as a Rust library and (b) as a pure SQLite extension (with --features build_extension).

You can get the SQLite extension binaries from the GitHub releases. Alternatively, you can build the extension by hand:

cargo build --release --features build_extension
# should give you target/release/libsqlite_zstd.so

Cross Compiling

For cross-compiling to aarch64-linux-android, you need to

  1. Download the target we need to cross-compile
rustup target add aarch64_linux_android
  1. Prepare the Android NDK (The binutils is deprecated and removed from NDK 23+, so you need to download an older version of NDK)

  2. Setup NDK binary path

export PATH="$PATH:<NDK_DIR>/toolchains/llvm/prebuilt/linux-x86_64/bin"
  1. Specify linker in cargo configuration file
[target.aarch64-linux-android]
linker = "aarch64-linux-android23-clang"
  1. Specify target accordingly when building
cargo build -r --features build_extension --target aarch64-linux-android

As a Python "extension"

If you want to use this project as an SQLite extension inside a Python project, you can install it as a Python package (you still need to have a rust compiler to actually build the binary):

pip install 'git+https://github.com/phiresky/sqlite-zstd.git#egg=sqlite_zstd&subdirectory=python'

This installs the extension as a Python package, with some support code to make it easy to use from Python code or Datasette.

Usage

You can either load this library as SQLite extension or as a Rust library. Note that sqlite extensions are not persistent, so you need to load it each time you connect to the database.

Is this library production ready?

I wouldn't trust it with my data (yet). Make sure you have backups of everything. I'm also not making any guarantees for backwards compatibility of future updates, though migrating by copying over the uncompressed data should of course work fine.

Sqlite CLI

Either load it in the REPL:

$ sqlite3 file.db
SQLite version 3.34.0 2020-12-01 16:14:00
sqlite> .load .../libsqlite_zstd.so
[2020-12-23T21:30:02Z INFO  sqlite_zstd::create_extension] [sqlite-zstd] initialized
sqlite>

Or alternatively:

sqlite3 -cmd '.load libsqlite_zstd.so' 'select * from foo'

C Api

int success = sqlite3_load_extension(db, "libsqlite_zstd.so", NULL, NULL);

See here for more information.

Rust

The recommended method is to add sqlite_zstd as a dependency to your project, then load it using

let conn: rusqlite::Connection;
sqlite_zstd::load(&conn)?;

Alternatively, you can load the extension like any other extension:

let conn: rusqlite::Connection;
conn.load_extension("libsqlite_zstd.so", None)?;

See here for more information.

Python

If you have installed this as a Python module as described above, you can load the extension into an existion SQLite connection like this:

import sqlite3
import sqlite_zstd

conn = sqlite3.connect(':memory:')
sqlite_zstd.load(conn)

When using Datasette, this extension is loaded automatically into every connection.

Verbosity / Debugging

You can change the log level by setting the environment variable SQLITE_ZSTD_LOG=error for less logging and SQLITE_ZSTD_LOG=debug for more logging.

Future Work / Ideas / Todo

  • investigate startup cost without dictionary
  • correctly handle indices over compressed columns (try generated columns instead of views, maybe vtables, ask the sqlite devs)
  • do compression in different thread(s) for performance (e.g. using .multithread(1) in zstd?)
  • type affinity interferes with int pass through - insert into compressed (col) values (1) will result in typeof(col) = text instead of integer if the type of the column was declared as text - which in turns causes decompression to fail with "got string, but zstd compressed data is always blob"
  • either change the type of the compressed column to blob or similar or disallow integer passthrough
GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below. 0. Additional Definitions. As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License. "The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library. A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version". The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version. The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this license document. 4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL and this license document. c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.) 5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

简介

sqlite-zstd 是 sqlite 的扩展,为 sqlite 提供透明的基于字典的行级压缩 展开 收起
README
LGPL-3.0
取消

发行版

暂无发行版

贡献者

全部

语言

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Rust
1
https://gitee.com/mirrors/sqlite-zstd.git
git@gitee.com:mirrors/sqlite-zstd.git
mirrors
sqlite-zstd
sqlite-zstd
master

搜索帮助