代码拉取完成,页面将自动刷新
/*
* mdmon - monitor external metadata arrays
*
* Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
* Copyright (C) 2007-2009 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* The management thread for monitoring active md arrays.
* This thread does things which might block such as memory
* allocation.
* In particular:
*
* - Find out about new arrays in this container.
* Allocate the data structures and open the files.
*
* For this we watch /proc/mdstat and find new arrays with
* metadata type that confirms sharing. e.g. "md4"
* When we find a new array we slip it into the list of
* arrays and signal 'monitor' by writing to a pipe.
*
* - Respond to reshape requests by allocating new data structures
* and opening new files.
*
* These come as a change to raid_disks. We allocate a new
* version of the data structures and slip it into the list.
* 'monitor' will notice and release the old version.
* Changes to level, chunksize, layout.. do not need re-allocation.
* Reductions in raid_disks don't really either, but we handle
* them the same way for consistency.
*
* - When a device is added to the container, we add it to the metadata
* as a spare.
*
* - Deal with degraded array
* We only do this when first noticing the array is degraded.
* This can be when we first see the array, when sync completes or
* when recovery completes.
*
* Check if number of failed devices suggests recovery is needed, and
* skip if not.
* Ask metadata to allocate a spare device
* Add device as not in_sync and give a role
* Update metadata.
* Open sysfs files and pass to monitor.
* Make sure that monitor Starts recovery....
*
* - Pass on metadata updates from external programs such as
* mdadm creating a new array.
*
* This is most-messy.
* It might involve adding a new array or changing the status of
* a spare, or any reconfig that the kernel doesn't get involved in.
*
* The required updates are received via a named pipe. There will
* be one named pipe for each container. Each message contains a
* sync marker: 0x5a5aa5a5, A byte count, and the message. This is
* passed to the metadata handler which will interpret and process it.
* For 'DDF' messages are internal data blocks with the leading
* 'magic number' signifying what sort of data it is.
*
*/
/*
* We select on /proc/mdstat and the named pipe.
* We create new arrays or updated version of arrays and slip
* them into the head of the list, then signal 'monitor' via a pipe write.
* 'monitor' will notice and place the old array on a return list.
* Metadata updates are placed on a queue just like they arrive
* from the named pipe.
*
* When new arrays are found based on correct metadata string, we
* need to identify them with an entry in the metadata. Maybe we require
* the metadata to be mdX/NN when NN is the index into an appropriate table.
*
*/
/*
* List of tasks:
* - Watch for spares to be added to the container, and write updated
* metadata to them.
* - Watch for new arrays using this container, confirm they match metadata
* and if so, start monitoring them
* - Watch for spares being added to monitored arrays. This shouldn't
* happen, as we should do all the adding. Just remove them.
* - Watch for change in raid-disks, chunk-size, etc. Update metadata and
* start a reshape.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "mdadm.h"
#include "mdmon.h"
#include "xmalloc.h"
#include <sys/syscall.h>
#include <sys/socket.h>
static void close_aa(struct active_array *aa)
{
struct mdinfo *d;
for (d = aa->info.devs; d; d = d->next) {
close(d->recovery_fd);
close(d->state_fd);
close(d->bb_fd);
close(d->ubb_fd);
}
if (aa->action_fd >= 0)
close(aa->action_fd);
if (aa->info.state_fd >= 0)
close(aa->info.state_fd);
if (aa->resync_start_fd >= 0)
close(aa->resync_start_fd);
if (aa->metadata_fd >= 0)
close(aa->metadata_fd);
if (aa->sync_completed_fd >= 0)
close(aa->sync_completed_fd);
if (aa->safe_mode_delay_fd >= 0)
close(aa->safe_mode_delay_fd);
}
static void free_aa(struct active_array *aa)
{
/* Note that this doesn't close fds if they are being used
* by a clone. ->container will be set for a clone
*/
dprintf("sys_name: %s\n", aa->info.sys_name);
if (!aa->container)
close_aa(aa);
while (aa->info.devs) {
struct mdinfo *d = aa->info.devs;
aa->info.devs = d->next;
free(d);
}
free(aa);
}
static struct active_array *duplicate_aa(struct active_array *aa)
{
struct active_array *newa = xmalloc(sizeof(*newa));
struct mdinfo **dp1, **dp2;
*newa = *aa;
newa->next = NULL;
newa->replaces = NULL;
newa->info.next = NULL;
dp2 = &newa->info.devs;
for (dp1 = &aa->info.devs; *dp1; dp1 = &(*dp1)->next) {
struct mdinfo *d;
if ((*dp1)->state_fd < 0)
continue;
d = xmalloc(sizeof(*d));
*d = **dp1;
*dp2 = d;
dp2 = & d->next;
}
*dp2 = NULL;
return newa;
}
static void wakeup_monitor(void)
{
/* tgkill(getpid(), mon_tid, SIGUSR1); */
int pid = getpid();
syscall(SYS_tgkill, pid, mon_tid, SIGUSR1);
}
static void remove_old(void)
{
if (discard_this) {
discard_this->next = NULL;
free_aa(discard_this);
if (pending_discard == discard_this)
pending_discard = NULL;
discard_this = NULL;
wakeup_monitor();
}
}
static void replace_array(struct supertype *container,
struct active_array *old,
struct active_array *new)
{
/* To replace an array, we add it to the top of the list
* marked with ->replaces to point to the original.
* 'monitor' will take the original out of the list
* and put it on 'discard_this'. We take it from there
* and discard it.
*/
remove_old();
while (pending_discard) {
while (discard_this == NULL)
sleep_for(1, 0, true);
remove_old();
}
pending_discard = old;
new->replaces = old;
new->next = container->arrays;
container->arrays = new;
wakeup_monitor();
}
struct metadata_update *update_queue = NULL;
struct metadata_update *update_queue_handled = NULL;
struct metadata_update *update_queue_pending = NULL;
static void free_updates(struct metadata_update **update)
{
while (*update) {
struct metadata_update *this = *update;
void **space_list = this->space_list;
*update = this->next;
free(this->buf);
free(this->space);
while (space_list) {
void *space = space_list;
space_list = *space_list;
free(space);
}
free(this);
}
}
void check_update_queue(struct supertype *container)
{
free_updates(&update_queue_handled);
if (update_queue == NULL &&
update_queue_pending) {
update_queue = update_queue_pending;
update_queue_pending = NULL;
wakeup_monitor();
}
}
static void queue_metadata_update(struct metadata_update *mu)
{
struct metadata_update **qp;
qp = &update_queue_pending;
while (*qp)
qp = & ((*qp)->next);
*qp = mu;
}
static void add_disk_to_container(struct supertype *st, struct mdinfo *sd)
{
int dfd;
char nm[20];
struct metadata_update *update = NULL;
mdu_disk_info_t dk = {
.number = -1,
.major = sd->disk.major,
.minor = sd->disk.minor,
.raid_disk = -1,
.state = 0,
};
dprintf("add %d:%d to container\n", sd->disk.major, sd->disk.minor);
sd->next = st->devs;
st->devs = sd;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDWR);
if (dfd < 0)
return;
st->update_tail = &update;
st->ss->add_to_super(st, &dk, dfd, NULL, INVALID_SECTORS);
st->ss->write_init_super(st);
queue_metadata_update(update);
st->update_tail = NULL;
}
/*
* Create and queue update structure about the removed disks.
* The update is prepared by super type handler and passed to the monitor
* thread.
*/
static void remove_disk_from_container(struct supertype *st, struct mdinfo *sd)
{
struct metadata_update *update = NULL;
mdu_disk_info_t dk = {
.number = -1,
.major = sd->disk.major,
.minor = sd->disk.minor,
.raid_disk = -1,
.state = 0,
};
dprintf("remove %d:%d from container\n",
sd->disk.major, sd->disk.minor);
st->update_tail = &update;
st->ss->remove_from_super(st, &dk);
/* FIXME this write_init_super shouldn't be here.
* We have it after add_to_super to write to new device,
* but with 'remove' we don't ant to write to that device!
*/
st->ss->write_init_super(st);
queue_metadata_update(update);
st->update_tail = NULL;
}
static void manage_container(struct mdstat_ent *mdstat,
struct supertype *container)
{
/* Of interest here are:
* - if a new device has been added to the container, we
* add it to the array ignoring any metadata on it.
* - if a device has been removed from the container, we
* remove it from the device list and update the metadata.
* FIXME should we look for compatible metadata and take hints
* about spare assignment.... probably not.
*/
if (mdstat->devcnt != container->devcnt) {
struct mdinfo **cdp, *cd, *di, *mdi;
int found;
/* read /sys/block/NAME/md/dev-??/block/dev to find out
* what is there, and compare with container->info.devs
* To see what is removed and what is added.
* These need to be remove from, or added to, the array
*/
mdi = sysfs_read(-1, mdstat->devnm, GET_DEVS);
if (!mdi) {
/* invalidate the current count so we can try again */
container->devcnt = -1;
return;
}
/* check for removals */
for (cdp = &container->devs; *cdp; ) {
found = 0;
for (di = mdi->devs; di; di = di->next)
if (di->disk.major == (*cdp)->disk.major &&
di->disk.minor == (*cdp)->disk.minor) {
found = 1;
break;
}
if (!found) {
cd = *cdp;
*cdp = (*cdp)->next;
remove_disk_from_container(container, cd);
free(cd);
} else
cdp = &(*cdp)->next;
}
/* check for additions */
for (di = mdi->devs; di; di = di->next) {
for (cd = container->devs; cd; cd = cd->next)
if (di->disk.major == cd->disk.major &&
di->disk.minor == cd->disk.minor)
break;
if (!cd) {
struct mdinfo *newd = xmalloc(sizeof(*newd));
*newd = *di;
add_disk_to_container(container, newd);
}
}
sysfs_free(mdi);
container->devcnt = mdstat->devcnt;
}
}
static int sysfs_open2(char *devnum, char *name, char *attr)
{
int fd = sysfs_open(devnum, name, attr);
if (fd >= 0) {
/* seq_file in the kernel allocates buffer space
* on the first read. Do that now so 'monitor'
* never needs too.
*/
char buf[200];
if (read(fd, buf, sizeof(buf)) < 0)
/* pretend not to ignore return value */
return fd;
}
return fd;
}
static int disk_init_and_add(struct mdinfo *disk, struct mdinfo *clone,
struct active_array *aa)
{
if (!disk || !clone)
return -1;
*disk = *clone;
disk->recovery_fd = sysfs_open2(aa->info.sys_name, disk->sys_name,
"recovery_start");
if (disk->recovery_fd < 0)
return -1;
disk->state_fd = sysfs_open2(aa->info.sys_name, disk->sys_name, "state");
if (disk->state_fd < 0) {
close(disk->recovery_fd);
return -1;
}
disk->bb_fd = sysfs_open2(aa->info.sys_name, disk->sys_name,
"bad_blocks");
if (disk->bb_fd < 0) {
close(disk->recovery_fd);
close(disk->state_fd);
return -1;
}
disk->ubb_fd = sysfs_open2(aa->info.sys_name, disk->sys_name,
"unacknowledged_bad_blocks");
if (disk->ubb_fd < 0) {
close(disk->recovery_fd);
close(disk->state_fd);
close(disk->bb_fd);
return -1;
}
disk->prev_state = read_dev_state(disk->state_fd);
disk->curr_state = disk->prev_state;
disk->next = aa->info.devs;
aa->info.devs = disk;
return 0;
}
/**
* managemon_disk_remove()- remove disk from the MD array.
* @disk: device to be removed.
* @array_devnm: the name of the array to remove disk from.
*
* It tries to remove the disk from the MD array and if it is successful then it closes all opened
* descriptors. Removing action requires suspend, it might take a while.
* Invalidating mdi->state_fd will prevent from using this device further (see duplicate_aa()).
*
* To avoid deadlock, new file descriptor is opened because monitor may already wait on
* mdddev_suspend() in kernel and keep saved descriptor locked.
*
* Returns MDADM_STATUS_SUCCESS if disk has been removed, MDADM_STATUS_ERROR otherwise.
*/
static mdadm_status_t managemon_disk_remove(struct mdinfo *disk, char *array_devnm)
{
int new_state_fd = sysfs_open2(array_devnm, disk->sys_name, "state");
if (!is_fd_valid(new_state_fd))
return MDADM_STATUS_ERROR;
if (write_attr("remove", new_state_fd) != MDADM_STATUS_SUCCESS)
return MDADM_STATUS_ERROR;
close_fd(&new_state_fd);
close_fd(&disk->state_fd);
close_fd(&disk->recovery_fd);
close_fd(&disk->bb_fd);
close_fd(&disk->ubb_fd);
return MDADM_STATUS_SUCCESS;
}
static void manage_member(struct mdstat_ent *mdstat,
struct active_array *a)
{
/* Compare mdstat info with known state of member array.
* We do not need to look for device state changes here, that
* is dealt with by the monitor.
*
* If a reshape is being requested, monitor will have noticed
* that sync_action changed and will have set check_reshape.
* We just need to see if new devices have appeared. All metadata
* updates will already have been processed.
*
* We also want to handle degraded arrays here by
* trying to find and assign a spare.
* We do that whenever the monitor tells us too.
*/
char buf[SYSFS_MAX_BUF_SIZE];
int frozen;
struct supertype *container = a->container;
struct mdinfo *mdi;
if (container == NULL)
/* Raced with something */
return;
if (mdstat->active) {
// FIXME
a->info.array.raid_disks = mdstat->raid_disks;
// MORE
}
mdi = sysfs_read(-1, mdstat->devnm,
GET_COMPONENT|GET_CONSISTENCY_POLICY);
if (mdi) {
a->info.component_size = mdi->component_size;
a->info.consistency_policy = mdi->consistency_policy;
sysfs_free(mdi);
}
/* honor 'frozen' */
if (sysfs_get_str(&a->info, NULL, "metadata_version", buf, sizeof(buf)) > 0)
frozen = buf[9] == '-';
else
frozen = 1; /* can't read metadata_version assume the worst */
/* If sync_action is not 'idle' then don't try recovery now */
if (!frozen &&
sysfs_get_str(&a->info, NULL, "sync_action",
buf, sizeof(buf)) > 0 && strncmp(buf, "idle", 4) != 0)
frozen = 1;
if (mdstat->level) {
int level = map_name(pers, mdstat->level);
if (level == 0 || level == LEVEL_LINEAR) {
a->to_remove = 1;
wakeup_monitor();
return;
}
else if (a->info.array.level != level && level > 0) {
struct active_array *newa = duplicate_aa(a);
if (newa) {
newa->info.array.level = level;
replace_array(container, a, newa);
a = newa;
}
}
}
/* we are after monitor kick,
* so container field can be cleared - check it again
*/
if (a->container == NULL)
return;
if (sigterm && a->info.safe_mode_delay != 1 && a->safe_mode_delay_fd >= 0)
if (write_attr("0.001", a->safe_mode_delay_fd) == MDADM_STATUS_SUCCESS)
a->info.safe_mode_delay = 1;
if (a->check_member_remove) {
bool any_removed = false;
bool all_removed = true;
struct mdinfo *disk;
for (disk = a->info.devs; disk; disk = disk->next) {
if (disk->man_disk_to_remove == false)
continue;
if (disk->mon_descriptors_not_used == false) {
/* To early, repeat later */
all_removed = false;
continue;
}
if (managemon_disk_remove(disk, a->info.sys_name)) {
all_removed = false;
continue;
}
any_removed = true;
}
if (any_removed) {
struct active_array *newa = duplicate_aa(a);
if (all_removed)
newa->check_member_remove = false;
replace_array(container, a, newa);
a = newa;
}
if (!all_removed)
return;
}
/* We don't check the array while any update is pending, as it
* might container a change (such as a spare assignment) which
* could affect our decisions.
*/
if (a->check_degraded && !frozen &&
update_queue == NULL && update_queue_pending == NULL) {
struct metadata_update *updates = NULL;
struct mdinfo *newdev = NULL;
struct active_array *newa;
struct mdinfo *d;
a->check_degraded = 0;
/* The array may not be degraded, this is just a good time
* to check.
*/
newdev = container->ss->activate_spare(a, &updates);
if (!newdev)
return;
newa = duplicate_aa(a);
/* prevent the kernel from activating the disk(s) before we
* finish adding them
*/
dprintf("freezing %s\n", a->info.sys_name);
sysfs_set_str(&a->info, NULL, "sync_action", "frozen");
/* Add device to array and set offset/size/slot.
* and open files for each newdev */
for (d = newdev; d ; d = d->next) {
struct mdinfo *newd;
newd = xmalloc(sizeof(*newd));
if (sysfs_add_disk(&newa->info, d, 0) < 0) {
free(newd);
continue;
}
disk_init_and_add(newd, d, newa);
}
queue_metadata_update(updates);
updates = NULL;
while (update_queue_pending || update_queue) {
check_update_queue(container);
sleep_for(0, MSEC_TO_NSEC(15), true);
}
replace_array(container, a, newa);
if (sysfs_set_str(&a->info, NULL,
"sync_action", "recover") == 0)
newa->prev_action = recover;
dprintf("recovery started on %s\n", a->info.sys_name);
while (newdev) {
d = newdev->next;
free(newdev);
newdev = d;
}
free_updates(&updates);
}
if (a->check_reshape) {
/* mdadm might have added some devices to the array.
* We want to disk_init_and_add any such device to a
* duplicate_aa and replace a with that.
* mdstat doesn't have enough info so we sysfs_read
* and look for new stuff.
*/
struct mdinfo *info, *d, *d2, *newd;
unsigned long long array_size;
struct active_array *newa = NULL;
a->check_reshape = 0;
info = sysfs_read(-1, mdstat->devnm,
GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE);
if (!info)
goto out2;
for (d = info->devs; d; d = d->next) {
if (d->disk.raid_disk < 0)
continue;
for (d2 = a->info.devs; d2; d2 = d2->next)
if (d2->disk.raid_disk ==
d->disk.raid_disk)
break;
if (d2)
/* already have this one */
continue;
if (!newa)
newa = duplicate_aa(a);
newd = xmalloc(sizeof(*newd));
disk_init_and_add(newd, d, newa);
}
if (sysfs_get_ll(info, NULL, "array_size", &array_size) == 0 &&
a->info.custom_array_size > array_size*2) {
sysfs_set_num(info, NULL, "array_size",
a->info.custom_array_size/2);
}
out2:
sysfs_free(info);
if (newa)
replace_array(container, a, newa);
}
}
static int aa_ready(struct active_array *aa)
{
struct mdinfo *d;
int level = aa->info.array.level;
for (d = aa->info.devs; d; d = d->next)
if (d->state_fd < 0)
return 0;
if (aa->info.state_fd < 0)
return 0;
if (level > 0 && (aa->action_fd < 0 || aa->resync_start_fd < 0))
return 0;
if (!aa->container)
return 0;
return 1;
}
static void manage_new(struct mdstat_ent *mdstat,
struct supertype *container,
struct active_array *victim)
{
/* A new array has appeared in this container.
* Hopefully it is already recorded in the metadata.
* Check, then create the new array to report it to
* the monitor.
*/
struct active_array *new = NULL;
struct mdinfo *mdi = NULL, *di;
int i, inst;
int failed = 0;
char buf[SYSFS_MAX_BUF_SIZE];
/* check if array is ready to be monitored */
if (!mdstat->active || !mdstat->level)
return;
if (strncmp(mdstat->level, "raid0", strlen("raid0")) == 0 ||
strncmp(mdstat->level, "linear", strlen("linear")) == 0)
return;
mdi = sysfs_read(-1, mdstat->devnm,
GET_LEVEL|GET_CHUNK|GET_DISKS|GET_COMPONENT|
GET_SAFEMODE|GET_DEVS|GET_OFFSET|GET_SIZE|GET_STATE|
GET_LAYOUT|GET_DEVS_ALL);
if (!mdi)
return;
new = xcalloc(1, sizeof(*new));
strcpy(new->info.sys_name, mdstat->devnm);
new->prev_state = new->curr_state = new->next_state = inactive;
new->prev_action= new->curr_action= new->next_action= idle;
new->container = container;
if (parse_num(&inst, to_subarray(mdstat, container->devnm)) != 0)
goto error;
new->info.array = mdi->array;
new->info.component_size = mdi->component_size;
for (i = 0; i < new->info.array.raid_disks; i++) {
struct mdinfo *newd = xmalloc(sizeof(*newd));
for (di = mdi->devs; di; di = di->next)
if (i == di->disk.raid_disk)
break;
if (disk_init_and_add(newd, di, new) != 0) {
if (newd)
free(newd);
failed++;
if (failed > new->info.array.failed_disks) {
/* we cannot properly monitor without all working disks */
new->container = NULL;
break;
}
}
}
new->action_fd = sysfs_open2(new->info.sys_name, NULL, "sync_action");
new->info.state_fd = sysfs_open2(new->info.sys_name, NULL, "array_state");
new->resync_start_fd = sysfs_open2(new->info.sys_name, NULL, "resync_start");
new->metadata_fd = sysfs_open2(new->info.sys_name, NULL, "metadata_version");
new->sync_completed_fd = sysfs_open2(new->info.sys_name, NULL, "sync_completed");
new->safe_mode_delay_fd = sysfs_open2(new->info.sys_name, NULL,
"safe_mode_delay");
dprintf("inst: %d action: %d state: %d\n", inst,
new->action_fd, new->info.state_fd);
if (mdi->safe_mode_delay >= 50)
/* Normal start, mdadm set this. */
new->info.safe_mode_delay = mdi->safe_mode_delay;
else
/* Restart, just pick a number */
new->info.safe_mode_delay = 5000;
sysfs_set_safemode(&new->info, new->info.safe_mode_delay);
/* reshape_position is set by mdadm in sysfs
* read this information for new arrays only (empty victim)
*/
if ((victim == NULL) &&
(sysfs_get_str(mdi, NULL, "sync_action", buf, sizeof(buf)) > 0) &&
(strncmp(buf, "reshape", 7) == 0)) {
if (sysfs_get_ll(mdi, NULL, "reshape_position",
&new->last_checkpoint) != 0)
new->last_checkpoint = 0;
else {
int data_disks = mdi->array.raid_disks;
if (mdi->array.level == 4 || mdi->array.level == 5)
data_disks--;
if (mdi->array.level == 6)
data_disks -= 2;
new->last_checkpoint /= data_disks;
}
dprintf("mdmon: New monitored array is under reshape.\n"
" Last checkpoint is: %llu\n",
new->last_checkpoint);
}
sysfs_free(mdi);
mdi = NULL;
/* if everything checks out tell the metadata handler we want to
* manage this instance
*/
if (!aa_ready(new) || container->ss->open_new(container, new, inst) < 0) {
goto error;
} else {
replace_array(container, victim, new);
if (failed) {
new->check_degraded = 1;
manage_member(mdstat, new);
}
}
return;
error:
pr_err("failed to monitor %s\n", mdstat->metadata_version);
new->container = NULL;
free_aa(new);
if (mdi)
sysfs_free(mdi);
}
void manage(struct mdstat_ent *mdstat, struct supertype *container)
{
/* We have just read mdstat and need to compare it with
* the known active arrays.
* Arrays with the wrong metadata are ignored.
*/
for ( ; mdstat ; mdstat = mdstat->next) {
struct active_array *a;
if (strcmp(mdstat->devnm, container->devnm) == 0) {
manage_container(mdstat, container);
continue;
}
if (!is_container_member(mdstat, container->devnm))
/* Not for this array */
continue;
/* Looks like a member of this container */
for (a = container->arrays; a; a = a->next) {
if (strcmp(mdstat->devnm, a->info.sys_name) == 0) {
if (a->container && a->to_remove == 0)
manage_member(mdstat, a);
break;
}
}
if ((a == NULL || !a->container) && !sigterm)
manage_new(mdstat, container, a);
}
}
static void handle_message(struct supertype *container, struct metadata_update *msg)
{
/* queue this metadata update through to the monitor */
struct metadata_update *mu;
if (msg->len <= 0)
while (update_queue_pending || update_queue) {
check_update_queue(container);
sleep_for(0, MSEC_TO_NSEC(15), true);
}
if (msg->len == 0) { /* ping_monitor */
int cnt;
cnt = monitor_loop_cnt;
if (cnt & 1)
cnt += 2; /* wait until next pselect */
else
cnt += 3; /* wait for 2 pselects */
wakeup_monitor();
while (monitor_loop_cnt - cnt < 0)
sleep_for(0, MSEC_TO_NSEC(10), true);
} else if (msg->len == -1) { /* ping_manager */
struct mdstat_ent *mdstat = mdstat_read(1, 0);
manage(mdstat, container);
free_mdstat(mdstat);
} else if (!sigterm) {
mu = xmalloc(sizeof(*mu));
mu->len = msg->len;
mu->buf = msg->buf;
msg->buf = NULL;
mu->space = NULL;
mu->space_list = NULL;
mu->next = NULL;
if (container->ss->prepare_update)
if (!container->ss->prepare_update(container, mu))
free_updates(&mu);
queue_metadata_update(mu);
}
}
void read_sock(struct supertype *container)
{
int fd;
struct metadata_update msg;
int terminate = 0;
long fl;
int tmo = 3; /* 3 second timeout before hanging up the socket */
fd = accept(container->sock, NULL, NULL);
if (fd < 0)
return;
fl = fcntl(fd, F_GETFL, 0);
if (fl < 0) {
close_fd(&fd);
return;
}
fl |= O_NONBLOCK;
if (fcntl(fd, F_SETFL, fl) < 0) {
close_fd(&fd);
return;
}
do {
msg.buf = NULL;
/* read and validate the message */
if (receive_message(fd, &msg, tmo) == 0) {
handle_message(container, &msg);
if (msg.len == 0) {
/* ping reply with version */
msg.buf = Version;
msg.len = strlen(Version) + 1;
if (send_message(fd, &msg, tmo) < 0)
terminate = 1;
} else if (ack(fd, tmo) < 0)
terminate = 1;
} else
terminate = 1;
} while (!terminate);
close(fd);
}
int exit_now = 0;
int manager_ready = 0;
void do_manager(struct supertype *container)
{
struct mdstat_ent *mdstat;
sigset_t set;
sigprocmask(SIG_UNBLOCK, NULL, &set);
sigdelset(&set, SIGUSR1);
sigdelset(&set, SIGTERM);
do {
if (exit_now)
exit(0);
/* Can only 'manage' things if 'monitor' is not making
* structural changes to metadata, so need to check
* update_queue
*/
if (update_queue == NULL) {
mdstat = mdstat_read(1, 0);
manage(mdstat, container);
read_sock(container);
free_mdstat(mdstat);
}
remove_old();
check_update_queue(container);
manager_ready = 1;
if (sigterm)
wakeup_monitor();
if (update_queue == NULL)
mdstat_wait_fd(container->sock, &set);
else
/* If an update is happening, just wait for signal */
pselect(0, NULL, NULL, NULL, NULL, &set);
} while(1);
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。