1 Star 0 Fork 1

mstitop/spring-ai

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

Spring AI build status

Welcome to the Spring AI project!

The Spring AI project provides a Spring-friendly API and abstractions for developing AI applications.

Let's make your @Beans intelligent!

For further information go to our Spring AI reference documentation.

Breaking changes

  • Refer to the upgrade notes to see how to upgrade to 1.0.0.M1 or higher.

Project Links

Educational Resources

Some selected videos. Search YouTube! for more.

  • Spring Tips: Spring AI
    Watch Spring Tips video
  • Overview of Spring AI @ Devoxx 2023
    Watch the Devoxx 2023 video
  • Introducing Spring AI - Add Generative AI to your Spring Applications
    Watch the video

Getting Started

Please refer to the Getting Started Guide for instruction on adding your dependencies.

Note, the new Spring CLI project lets you get up and running in two simple steps, described in detail here.

  1. Install Spring CLI
  2. Type spring boot new --from ai --name myai in your terminal

Adding Dependencies manually

Note that are two main steps.

  1. Add the Spring Milestone and Snapshot repositories to your build system.
  2. Add the Spring AI BOM
  3. Add dependencies for the specific AI model, Vector Database or other component dependencies you require.

Overview

Despite the extensive history of AI, Java's role in this domain has been relatively minor. This is mainly due to the historical reliance on efficient algorithms developed in languages such as C/C++, with Python serving as a bridge to access these libraries. The majority of ML/AI tools were built around the Python ecosystem. However, recent progress in Generative AI, spurred by innovations like OpenAI's ChatGPT, has popularized the interaction with pre-trained models via HTTP. This eliminates much of the dependency on C/C++/Python libraries and opens the door to the use of programming languages such as Java.

The Python libraries LangChain and LlamaIndex have become popular to implement Generative AI solutions and can be implemented in other programming languages. These Python libraries share foundational themes with Spring projects, such as:

  • Portable Service Abstractions
  • Modularity
  • Extensibility
  • Reduction of boilerplate code
  • Integration with diverse data sources
  • Prebuilt solutions for common use cases

Taking inspiration from these libraries, the Spring AI project aims to provide a similar experience for Spring developers in the AI domain.

Note, that the Spring AI API is not a direct port of either LangChain or LlamaIndex. You will see significant differences in the API if you are familiar with those two projects, though concepts and ideas are fairly portable.

Feature Overview

This is a high level feature overview. The features that are implemented lay the foundation, with subsequent more complex features building upon them.

You can find more details in the Reference Documentation

Interacting with AI Models

ChatClient: A foundational feature of Spring AI is a portable client API for interacting with generative AI models. With this portable API, you can initially target one AI chat model, for example OpenAI and then easily swap out the implementation to another AI chat model, for example Amazon Bedrock's Anthropic Model. When necessary, you can also drop down to use non-portable model options.

Spring AI supports many AI models. For an overview see here. Specific models currently supported are

  • OpenAI
  • Azure OpenAI
  • Amazon Bedrock (Anthropic, Llama, Cohere, Titan, Jurassic2)
  • Hugging Face
  • Google VertexAI (PaLM2, Gemini)
  • Mistral AI
  • Stability AI
  • Ollama
  • PostgresML
  • Transformers (ONNX)
  • Anthropic Claude3
  • MiniMax
  • Moonshot

Prompts: Central to AI model interaction is the Prompt, which provides specific instructions for the AI to act upon. Crafting an effective Prompt is both an art and science, giving rise to the discipline of "Prompt Engineering". These prompts often leverage a templating engine for easy data substitution within predefined text using placeholders.

Explore more on Prompts in our concept guide. To learn about the Prompt class, refer to the Prompt API guide.

Prompt Templates: Prompt Templates support the creation of prompts, particularly when a Template Engine is employed.

Delve into PromptTemplates in our concept guide. For a hands-on guide to PromptTemplate, see the PromptTemplate API guide.

Output Parsers: AI model outputs often come as raw java.lang.String values. Output Parsers restructure these raw strings into more programmer-friendly formats, such as CSV or JSON.

Get insights on Output Parsers in our concept guide.. For implementation details, visit the StructuredOutputConverter API guide.

Incorporating your data

Incorporating proprietary data into Generative AI without retraining the model has been a breakthrough. Retraining models, especially those with billions of parameters, is challenging due to the specialized hardware required. The 'In-context' learning technique provides a simpler method to infuse your pre-trained model with data, whether from text files, HTML, or database results. The right techniques are critical for developing successful solutions.

Retrieval Augmented Generation

Retrieval Augmented Generation, or RAG for short, is a pattern that enables you to bring your data to pre-trained models. RAG excels in the 'query over your docs' use-case.

Learn more about Retrieval Augmented Generation.

Bringing your data to the model follows an Extract, Transform, and Load (ETL) pattern. The subsequent classes and interfaces support RAG's data preparation.

Documents:

The Document class encapsulates your data, including text and metadata, for the AI model. While a Document can represent extensive content, such as an entire file, the RAG approach segments content into smaller pieces for inclusion in the prompt. The ETL process uses the interfaces DocumentReader, DocumentTransformer, and DocumentWriter, ending with data storage in a Vector Database. This database later discerns the pieces of data that are pertinent to a user's query.

Document Readers:

Document Readers produce a List<Document> from diverse sources like PDFs, Markdown files, and Word documents. Given that many sources are unstructured, Document Readers often segment based on content semantics, avoiding splits within tables or code sections. After the initial creation of the List<Document>, the data flows through transformers for further refinement.

Document Transformers:

Transformers further modify the List<Document> by eliminating superfluous data, like PDF margins, or appending metadata (e.g., primary keywords or summaries). Another critical transformation is subdividing documents to fit within the AI model's token constraints. Each model has a context-window indicating its input and output data limits. Typically, one token equates to about 0.75 words. For instance, in model names like gpt-4-32k, "32K" signifies the token count.

Document Writers:

The final ETL step within RAG involves committing the data segments to a Vector Database. Though the DocumentWriter interface isn't exclusively for Vector Database writing, it the main type of implementation.

Vector Stores: Vector Databases are instrumental in incorporating your data with AI models. They ascertain which document sections the AI should use for generating responses. Examples of Vector Databases include Chroma, Oracle, Postgres, Pinecone, Qdrant, Weaviate, Mongo Atlas, and Redis. Spring AI's VectorStore abstraction permits effortless transitions between database implementations.

Cloning the repo

This repository contains large model files. To clone it you have to either:

  • Ignore the large files (won't affect the spring-ai behaviour) : GIT_LFS_SKIP_SMUDGE=1 git clone git@github.com:spring-projects/spring-ai.git.
  • Or install the Git Large File Storage before cloning the repo.

Building

To build with running unit tests

./mvnw clean package

To build including integration tests. Set API key environment variables for OpenAI and Azure OpenAI before running.

./mvnw clean verify -Pintegration-tests

To run a specific integration test allowing for up to two attempts to succeed. This is useful when a hosted service is not reliable or times out.

./mvnw -pl vector-stores/spring-ai-pgvector-store -Pintegration-tests -Dfailsafe.rerunFailingTestsCount=2 -Dit.test=PgVectorStoreIT verify

To build the docs

./mvnw -pl spring-ai-docs antora

The docs are then in the directory spring-ai-docs/target/antora/site/index.html

To reformat using the java-format plugin

./mvnw spring-javaformat:apply

To update the year on license headers using the license-maven-plugin

./mvnw license:update-file-header -Plicense

To check javadocs using the javadoc:javadoc

./mvnw javadoc:javadoc -Pjavadoc
Apache License Version 2.0, January 2004 https://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

暂无描述 展开 收起
Java 等 3 种语言
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mstitop/spring-ai.git
git@gitee.com:mstitop/spring-ai.git
mstitop
spring-ai
spring-ai
main

搜索帮助