253 Star 2.4K Fork 976

GVPCalvin/AIAS

Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
contribute
Sync branch
Cancel
Notice: Creating folder will generate an empty file .keep, because not support in Git
Loading...
README

官网:

官网链接

下载模型

  • 查看最新下载链接请查看 1_sdks/README.md

模型使用方法:

    1. 用模型的名字搜索代码,找到模型的加载位置
    1. 然后更新模型路径(代码里默认加载路径是:项目/models 文件夹)
    1. 具体模型加载方法
  • http://aias.top/AIAS/guides/load_model.html

智慧工地检测SDK

支持检测的类别:

  • person (人体)
  • head (没戴安全帽)
  • helmet (戴安全帽)

SDK功能

工地安全检测,给出检测框和置信度。

  • 提供三个模型:
  • 小模型(yolov5s 29.7M)
  • 中模型(yolov5m 86.8M)
  • 大模型(yolov5l 190.8M)

运行小模型例子 - Yolov5sExample

  • 测试图片效果(只显示安全帽检测,过滤了其它类别的显示,具体看代码) small

运行中模型例子 - Yolov5mExample

  • 测试图片效果 medium

运行大模型例子 - Yolov5lExample

  • 测试图片效果 large

运行成功后,命令行应该看到下面的信息:

[INFO ] - [
	class: "helmet", probability: 0.89502, bounds: [x=0.956, y=0.525, width=0.044, height=0.067]
	class: "helmet", probability: 0.85951, bounds: [x=0.237, y=0.439, width=0.036, height=0.046]
	class: "helmet", probability: 0.81705, bounds: [x=0.901, y=0.378, width=0.036, height=0.052]
	class: "helmet", probability: 0.80817, bounds: [x=0.250, y=0.399, width=0.029, height=0.040]
	class: "helmet", probability: 0.80528, bounds: [x=0.771, y=0.336, width=0.029, height=0.043]
]

开源算法

1. sdk使用的开源算法

2. 模型如何导出 ?

"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats

Usage:
    $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""

import argparse

import torch

from utils.google_utils import attempt_download

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./helmet_head_person_s.pt', help='weights path')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    print(opt)

    # Input
    img = torch.zeros((opt.batch_size, 3, *opt.img_size))  # image size(1,3,320,192) iDetection

    # Load PyTorch model
    attempt_download(opt.weights)
    model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
    model.eval()
    model.model[-1].export = False  # set Detect() layer export=True
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    y = model(img)  # dry run

    # TorchScript export
    try:
        print('\nStarting TorchScript export with torch %s...' % torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.pt')  # filename
        ts = torch.jit.trace(model, img)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript export failure: %s' % e)

    # # ONNX export
    # try:
    #     import onnx
    #
    #     print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
    #     f = opt.weights.replace('.pt', '.onnx')  # filename
    #     model.fuse()  # only for ONNX
    #     torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
    #                       output_names=['classes', 'boxes'] if y is None else ['output'])
    #
    #     # Checks
    #     onnx_model = onnx.load(f)  # load onnx model
    #     onnx.checker.check_model(onnx_model)  # check onnx model
    #     print(onnx.helper.printable_graph(onnx_model.graph))  # print a human readable model
    #     print('ONNX export success, saved as %s' % f)
    # except Exception as e:
    #     print('ONNX export failure: %s' % e)
    #
    # # CoreML export
    # try:
    #     import coremltools as ct
    #
    #     print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
    #     # convert model from torchscript and apply pixel scaling as per detect.py
    #     model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
    #     f = opt.weights.replace('.pt', '.mlmodel')  # filename
    #     model.save(f)
    #     print('CoreML export success, saved as %s' % f)
    # except Exception as e:
    #     print('CoreML export failure: %s' % e)

    # Finish
    print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')

其它帮助信息

http://aias.top/guides.html

Git地址:

Github链接
Gitee链接

帮助文档:

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Java
1
https://gitee.com/mymagicpower/AIAS.git
git@gitee.com:mymagicpower/AIAS.git
mymagicpower
AIAS
AIAS
main

Search