SWIFT支持350+ LLM和100+ MLLM(多模态大模型)的训练(预训练、微调、对齐)、推理、评测和部署。开发者可以直接将我们的框架应用到自己的Research和生产环境中,实现模型训练评测到应用的完整链路。我们除支持了PEFT提供的轻量训练方案外,也提供了一个完整的Adapters库以支持最新的训练技术,如NEFTune、LoRA+、LLaMA-PRO等,这个适配器库可以脱离训练脚本直接使用在自己的自定流程中。
为方便不熟悉深度学习的用户使用,我们提供了一个Gradio的web-ui用于控制训练和推理,并提供了配套的深度学习课程和最佳实践供新手入门。 可以在Huggingface space 和 ModelScope创空间 中体验SWIFT web-ui功能了。
SWIFT具有丰富全面的文档,请查看我们的文档网站:
论文 | English Documentation | 中文文档
请扫描下面的二维码来加入我们的交流群:
Discord Group | 微信群 |
---|---|
![]() |
![]() |
swift infer --model_type qwen2_5-coder-3b-instruct
进行体验.swift infer --model_type aya-expanse-32b
进行体验.swift infer --model_type emu3-chat
进行体验.swift infer --model_type molmo-7b-d
进行体验.swift infer --model_type ovis1_6-gemma2-9b
进行体验.swift infer --model_type llama3_2-11b-vision-instruct
进行体验.swift infer --model_type llama3_2-1b-instruct
进行体验.swift infer --model_type llama3_1-8b-omni
进行体验.swift infer --model_type pixtral-12b --dtype fp16
进行体验.Reflection-llama3-70b
模型, 使用swift sft/infer --model_type reflection-llama_3_1-70b
命令即可训练和推理.swift infer --model_type minicpm3-4b
进行体验.swift infer --model_type yi-coder-1_5b-chat
进行体验.--use_liger true
开启训练.--sft_type reft
开始训练!--packing
开启。详情见PR.swift infer --model_type qwen2-math-1_5b-instruct
进行体验.swift infer --model_type minicpm-v-v2_6-chat
进行推理体验, 最佳实践可以查看这里.swift infer --model_type internlm2_5-1_8b-chat
进行体验.--sft_type fourierft
, 参数可以参考这里.--model_type mistral-nemo-base-2407
以及--model_type mistral-nemo-instruct-2407
开始训练和推理.swift sft --model_type xxx --use_galore true --galore_quantization true
来开始训练!model_type
分别为internvl2-1b, internvl2-40b, internvl2-llama3-76b. 最佳实践可以查看这里.numina-math-7b
.swift export --model_type xxx --to_ollama true
或者swift export --model_type xxx --quant_method bnb --quant_bits 4
.llava1_6-vicuna-7b-instruct
, llava1_6-vicuna-13b-instruct
等llava-hf模型. 最佳实践可以查看这里.BoolQ, ocnli, humaneval, math, ceval, mmlu, gsk8k, ARC_e
等50+标准数据集在内的评测流程, 请查看我们的评测文档来使用。下个迭代我们会支持多模态评测和Agent评测,记得持续关注我们: )deepseek-coder-v2-instruct
和deepseek-coder-v2-lite-instruct
来开启训练和推理.swift rlhf --rlhf_type kto
和swift rlhf --rlhf_type cpo
来开始训练,可以参考文档.swift simpo
来开始训练,最佳实践可以查看这里mini-internvl-chat-2b-v1_5
和mini-internvl-chat-4b-v1_5
来训练.phi3-vision-128k-instruct
来训练.deepseek-v2-lite
和deekseek-v2-lite-chat
telechat-12b-v2
和telechat-12b-v2-gptq-int4
BOFT
, Vera
和 Pissa
. 使用 --sft_type boft/vera
开启BOFT或者Vera, 使用 --init_lora_weights pissa
以及 --sft_type lora
来使用 Pissa.--model_type yi-1_5-9b-chat
等开始体验pip install .[seq_parallel]
, 之后在DDP环境中添加--sequence_parallel_size n
即可使用!swift orpo
来开始训练, 最佳实践可以查看这里llava-llama-3-8b-v1_1
.--lisa_activated_layers=2
来开启LISA(显存使用降低至全参训练的30%),指定 --tuner_backend unsloth
来使用unsloth,用更少的显存(30%或更少)更快的速度(5x)训练一个超大模型!--deepspeed zero3-offload
, 提供了默认zero3-offload配置文件来使用zero3+cpu offload.USE_HF
兼容HuggingFace生态, 切换成使用HF中的模型和数据集, 可以查看HuggingFace生态兼容文档.弱智吧
系列数据集. 在支持的模型和数据集文档中搜索ruozhiba
来找到数据集并开始训练!swift export
, 对模型进行AWQ/GPTQ量化导出, 以及推送ModelScope Hub. 具体可以查看: LLM量化与导出文档.--train_dataset_mix_ratio 2.0
开启训练!同时我们也开源了通用知识数据集 ms-bench.--merge_lora
参数.--deepspeed default-zero3
即可.swift web-ui
开启freeze_parameters_ratio
参数, 作为lora和全参数训练的折中方案. 对应的sh可以查看full_freeze_ddp. 支持disable_tqdm
, lazy_tokenize
, preprocess_num_proc
参数, 具体可以查看命令行参数.use_flash_attn
参数.Swift.prepare_model(model, NEFTuneConfig())
即可开启.使用Swift CLI运行
章节.SWIFT在Python环境中运行。请确保您的Python版本高于3.8。
# 全量能力
pip install 'ms-swift[all]' -U
# 仅使用LLM
pip install 'ms-swift[llm]' -U
# 仅使用AIGC
pip install 'ms-swift[aigc]' -U
# 仅使用Adapters
pip install ms-swift -U
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
SWIFT依赖torch>=1.13,建议torch>=2.0.0。
本章节介绍基本使用,更丰富的使用方式请查看文档部分。
Web-UI是基于gradio界面技术的零门槛训练部署界面方案。Web-UI配置简单,且完美支持多卡训练和部署:
swift web-ui
你可以参考以下脚本来自定义属于你的训练脚本.
训练过程 | 训练方式 |
---|---|
预训练 | 文本生成 |
微调 | 单轮/多轮 Agent训练/自我认知 多模态视觉/多模态语音 |
人类对齐 | DPO ORPO SimPO KTO CPO |
文生图 | DreamBooth等 |
文生视频 | - |
通过如下命令启动单卡微调:
LoRA:
# 实验环境: A100
# 显存需求: 20GB
# 运行时长: 3.1小时
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
全参数:
# 实验环境: A100
# 显存需求: 80GB
# 运行时长: 2.5小时
CUDA_VISIBLE_DEVICES=0 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type full \
--output_dir output \
--eval_steps 500 \
# 实验环境: 2 * A100
# 显存需求: 10GB + 13GB
# 运行时长: 3.4小时
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
# 实验环境: 4 * A100
# 显存需求: 4 * 30GB
# 运行时长: 0.8小时
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
模型并行与数据并行结合:
# 实验环境: 4 * A100
# 显存需求: 2*14GB + 2*18GB
# 运行时长: 1.7小时
NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
Deepspeed支持对GPTQ和AWQ量化模型进行训练.
ZeRO2:
# 实验环境: 4 * A100
# 显存需求: 4 * 21GB
# 运行时长: 0.9小时
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
--deepspeed default-zero2 \
ZeRO3:
# 实验环境: 4 * A100
# 显存需求: 4 * 19GB
# 运行时长: 3.2小时
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_type qwen1half-7b-chat \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
--deepspeed default-zero3 \
ZeRO3-Offload:
# 实验环境: 4 * A100
# 显存需求: 4 * 12GB
# 运行时长: 60小时
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
--model_id_or_path AI-ModelScope/WizardLM-2-8x22B \
--dataset blossom-math-zh \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
--deepspeed zero3-offload \
# 如果非共用磁盘请在各机器sh中额外指定`--save_on_each_node true`.
# node0
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NNODES=2 \
NODE_RANK=0 \
MASTER_ADDR=127.0.0.1 \
NPROC_PER_NODE=8 \
swift sft \
--model_type qwen1half-32b-chat \
--sft_type full \
--dataset blossom-math-zh \
--output_dir output \
--deepspeed default-zero3 \
# node1
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NNODES=2 \
NODE_RANK=1 \
MASTER_ADDR=xxx.xxx.xxx.xxx \
NPROC_PER_NODE=8 \
swift sft \
--model_type qwen1half-32b-chat \
--sft_type full \
--dataset blossom-math-zh \
--output_dir output \
--deepspeed default-zero3 \
DLC环境变量中,WORLD_SIZE指代node数量,RANK指代node序号,这一点和torchrun定义不同,需要注意。
NNODES=$WORLD_SIZE \
NODE_RANK=$RANK \
swift sft \
--model_type qwen1half-32b-chat \
--sft_type full \
--dataset blossom-math-zh \
--output_dir output \
--deepspeed default-zero3
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift pt \
--model_type qwen1half-7b \
--dataset chinese-c4#100000 \
--num_train_epochs 1 \
--sft_type full \
--deepspeed default-zero3 \
--output_dir output \
--lazy_tokenize true
# We support rlhf_type dpo/cpo/simpo/orpo/kto
CUDA_VISIBLE_DEVICES=0 \
swift rlhf \
--rlhf_type dpo \
--model_type qwen1half-7b-chat \
--dataset shareai-llama3-dpo-zh-en-emoji \
--num_train_epochs 5 \
--sft_type lora \
--output_dir output \
原始模型:
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat
# 使用VLLM加速
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat \
--infer_backend vllm --max_model_len 8192
LoRA微调后:
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir xxx/checkpoint-xxx --load_dataset_config true
# 使用VLLM加速
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir xxx/checkpoint-xxx --load_dataset_config true \
--merge_lora true --infer_backend vllm --max_model_len 8192
原始模型:
CUDA_VISIBLE_DEVICES=0 swift eval --model_type qwen1half-7b-chat \
--eval_dataset ARC_c --infer_backend vllm
LoRA微调后:
CUDA_VISIBLE_DEVICES=0 swift eval --ckpt_dir xxx/checkpoint-xxx \
--eval_dataset ARC_c --infer_backend vllm \
--merge_lora true \
原始模型:
CUDA_VISIBLE_DEVICES=0 swift export --model_type qwen1half-7b-chat \
--quant_bits 4 --quant_method awq
LoRA微调后:
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir xxx/checkpoint-xxx --load_dataset_config true \
--quant_method awq --quant_bits 4 \
--merge_lora true \
客户端使用OpenAI API进行调用,具体可以查看LLM部署文档
原始模型:
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen1half-7b-chat
# 使用VLLM加速
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen1half-7b-chat \
--infer_backend vllm --max_model_len 8192
LoRA微调后:
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir xxx/checkpoint-xxx
# 使用VLLM加速
CUDA_VISIBLE_DEVICES=0 swift deploy \
--ckpt_dir xxx/checkpoint-xxx --merge_lora true \
--infer_backend vllm --max_model_len 8192
完整的支持模型和数据集可以查看支持的模型和数据集列表.
模型类型 | 模型介绍 | 语言 | 模型大小 | 模型类型 |
---|---|---|---|---|
Qwen Qwen1.5 Qwen2 Qwen2.5 |
通义千问系列模型 | 中文 英文 |
0.5B-110B 包含量化版本 |
base模型 chat模型 MoE模型 代码模型 |
ChatGLM2 ChatGLM3 Codegeex2 GLM4 Codegeex4 |
智谱ChatGLM系列模型 | 中文 英文 |
6B-9B | base模型 chat模型 代码模型 长文本模型 |
Baichuan Baichuan2 |
百川1和百川2 | 中文 英文 |
7B-13B 包含量化版本 |
base模型 chat模型 |
Yuan2 | 浪潮源系列模型 | 中文 英文 |
2B-102B | instruct模型 |
XVerse | 元象系列模型 | 中文 英文 |
7B-65B | base模型 chat模型 长文本模型 MoE模型 |
LLaMA2 | LLaMA2系列模型 | 英文 | 7B-70B 包含量化版本 |
base模型 chat模型 |
LLaMA3 LLaMA3.1 Llama3.2 |
LLaMA3系列模型 | 英文 | 1B-70B 包含量化版本 |
base模型 chat模型 |
Mistral Mixtral |
Mistral系列模型 | 英文 | 7B-8x22B | base模型 instruct模型 MoE模型 |
Yi Yi1.5 Yi-Coder |
01AI的YI系列模型 | 中文 英文 |
1.5B-34B 包含量化版本 |
base模型 chat模型 长文本模型 |
InternLM InternLM2 InternLM2-Math InternLM2.5 |
浦江实验室书生浦语系列模型 | 中文 英文 |
1.8B-20B | base模型 chat模型 数学模型 |
DeepSeek DeepSeek-MoE DeepSeek-Coder DeepSeek-Math DeepSeek-V2 DeepSeek-Coder-V2 |
幻方系列模型 | 中文 英文 |
1.3B-236B | base模型 chat模型 MoE模型 代码模型 数学模型 |
MAMBA | MAMBA时序卷积模型 | 英文 | 130M-2.8B | base模型 |
Gemma Gemma2 |
Google Gemma系列模型 | 英文 | 2B-27B | base模型 instruct模型 |
MiniCPM MiniCPM3 |
OpenBmB MiniCPM系列模型 | 中文 英文 |
2B-3B | chat模型 MoE模型 |
OpenBuddy | OpenBuddy系列模型 | 中文 英文 |
7B-70B | base模型 chat模型 |
Orion | 猎户星空系列模型 | 中文 英文 |
14B | base模型 chat模型 |
BlueLM | VIVO蓝心大模型 | 中文 英文 |
7B | base模型 chat模型 |
Ziya2 | 封神榜系列模型 | 中文 英文 |
13B | base模型 chat模型 |
Skywork | 昆仑天工系列模型 | 中文 英文 |
13B | base模型 chat模型 |
Zephyr | 基于Mistral的zephyr系列模型 | 英文 | 7B | chat模型 |
PolyLM | 通义实验室自研的PolyLM系列模型 | 多语种 | 13B | base模型 |
SeqGPT | 通义实验室自研的文本理解模型,用于信息抽取和文本分类 | 中文 | 560M | 语义理解模型 |
SUS | 南方科技大学基于YI Fine-Tune的模型 | 中文 英文 |
34B | chat模型 |
Tongyi-Finance | 通义金融系列模型 | 中文 英文 |
14B | base模型 chat模型 金融模型 |
CodeFuse-CodeLLaMA CodeFuse-Codegeex2 CodeFuse-Qwen |
蚂蚁CodeFuse系列模型 | 中文 英文 |
6B-34B | chat模型 代码模型 |
phi2/phi3 | 微软PHI2模型 | 英文 | 3B/4B | base模型 指令模型 代码模型 |
Grok | X-ai | 英文 | 300B | base模型 |
TeleChat | Tele-AI | 中文 英文 |
7B-12B | chat模型 |
dbrx | databricks | 英文 | 132B | base模型 chat模型 |
mengzi3 | Langboat | 中文 英文 |
13B | base模型 |
c4ai-command-r | c4ai | 多语种 | 35B-104B | chat模型 |
aya-expanse | aya | 多语种 | 8B-32B | chat模型 |
WizardLM2 | WizardLM2系列模型 | 多语种 | 7B-8x22B 包含量化版本 |
chat模型 MoE模型 |
Atom | Atom | 中文 | 7B | base模型 chat模型 |
Chinese-LLaMA-Alpaca-2 | Chinese-LLaMA-Alpaca-2 | 中文 | 1.3B-13B | base模型 chat模型 长文本模型 |
Chinese-LLaMA-Alpaca-3 | Chinese-LLaMA-Alpaca-3 | 中文 | 8B | base模型 chat模型 |
ModelScope-Agent | ModelScope Agent系列 | 中文 | 7B-14B | agent模型 |
Numina | AI-MO | 英文 | 7B | 数学模型 |
模型类型 | 模型介绍 | 语言 | 模型大小 | 模型类型 |
---|---|---|---|---|
Qwen-VL Qwen2-VL |
通义千问视觉模型 | 中文 英文 |
2B-72B 包含量化版本 |
base模型 chat模型 |
Qwen-Audio Qwen2-Audio |
通义千问语音模型 | 中文 英文 |
7B | base模型 chat模型 |
Llama3.2-Vision | Llama3.2 | 英文 | 11B-90B | base模型 chat模型 |
YI-VL | 01AI的YI系列视觉模型 | 中文 英文 |
6B-34B | chat模型 |
XComposer2 XComposer2.5 |
浦江实验室书生浦语视觉模型 | 中文 英文 |
7B | chat模型 |
DeepSeek-VL Deepseek-Janus |
幻方系列视觉模型 | 中文 英文 |
1.3B-7B | chat模型 |
MiniCPM-V MiniCPM-V-2 MiniCPM-V-2.5 MiniCPM-V-2.6 |
OpenBmB MiniCPM视觉模型 | 中文 英文 |
3B-9B | chat模型 |
CogVLM CogAgent CogVLM2 CogVLM2-Video GLM4V |
智谱ChatGLM视觉问答和Agent模型 | 中文 英文 |
9B-19B | chat模型 |
Llava-HF | Llava-HF系列模型 | 英文 | 0.5B-110B | chat模型 |
Llava1.5 Llava1.6 |
Llava系列模型 | 英文 | 7B-34B | chat模型 |
Llava-Next Llava-Next-Video |
Llava-Next系列模型 | 中文 英文 |
7B-110B | chat模型 |
mPLUG-Owl2 mPLUG-Owl2.1 mPLUG-Owl3 |
mPLUG-Owl系列模型 | 英文 | 1B-11B | chat模型 |
InternVL Mini-InternVL InternVL2 |
InternVL | 中文 英文 |
1B-40B 包含量化版本 |
chat模型 |
Llava-llama3 | xtuner | 英文 | 8B | chat模型 |
Phi3-Vision | 微软 | 英文 | 4B | chat模型 |
PaliGemma | 英文 | 3B | chat模型 | |
Florence | 微软 | 英文 | 0.23B-0.77B | chat模型 |
Idefics3 | HuggingFaceM4 | 英文 | 8B | chat模型 |
Pixtral | mistralai | 英文 | 12B | chat模型 |
Llama3.1-Omni | LLaMA-Omni | 英文 | 8B | chat模型 |
Ovis | Ovis | 英文 | 9B | chat模型 |
Molmo | Molmo系列模型 | 英文 | 1B-72B | chat模型 |
Emu3-Chat | Emu3-Chat | 英文 | 8B | chat 模型 |
模型类型 | 模型介绍 | 语言 | 模型类型 |
---|---|---|---|
AnimateDiff | AnimateDiff动画模型 | 英文 | 文生视频 |
SD1.5/SD2.0/SDXL | StabilityAI系列扩散模型 | 英文 | 文生图 |
数据集类型 | 训练任务 | 数据集 |
---|---|---|
通用 | 微调 | 🔥ruozhiba, 🔥ms-bench, 🔥alpaca-en(gpt4), 🔥alpaca-zh(gpt4), multi-alpaca, instinwild, cot-en, cot-zh, firefly-zh, instruct-en, gpt4all-en, sharegpt, tulu-v2-sft-mixture, wikipedia-zh, open-orca, sharegpt-gpt4, deepctrl-sft, coig-cqia. |
Agent | 微调 | 🔥ms-agent, 🔥ms-agent-for-agentfabric, ms-agent-multirole, 🔥toolbench-for-alpha-umi, damo-agent-zh, damo-agent-zh-mini, agent-instruct-all-en. |
通用 | 人类对齐 | hh-rlhf, 🔥hh-rlhf-cn, stack-exchange-paired. |
代码 | 微调 | code-alpaca-en, 🔥leetcode-python-en, 🔥codefuse-python-en, 🔥codefuse-evol-instruction-zh. |
医疗 | 微调 | medical-en, medical-zh, 🔥disc-med-sft-zh. |
法律 | 微调 | lawyer-llama-zh, tigerbot-law-zh, 🔥disc-law-sft-zh. |
数学 | 微调 | 🔥blossom-math-zh, school-math-zh, open-platypus-en. |
SQL | 微调 | text2sql-en, 🔥sql-create-context-en. |
文本生成 | 微调 | 🔥advertise-gen-zh, 🔥dureader-robust-zh. |
分类 | 微调 | cmnli-zh, 🔥jd-sentiment-zh, 🔥hc3-zh, 🔥hc3-en. |
量化辅助 | 量化 | pileval. |
其他 | 微调 | finance-en, poetry-zh, webnovel-zh, generated-chat-zh, cls-fudan-news-zh, ner-jave-zh. |
视觉 | 微调 | coco-en, 🔥coco-en-mini, coco-en-2, coco-en-2-mini, capcha-images. |
音频 | 微调 | aishell1-zh, 🔥aishell1-zh-mini. |
硬件环境 | 备注 |
---|---|
CPU | |
RTX20系列/30系列/40系列等 | 30序列之后可使用BF16和FlashAttn |
计算卡系列 T4/V100等 | 不支持BF16和FlashAttn |
计算卡系列 A10/A100等 | 支持BF16和FlashAttn |
华为昇腾NPU |
1/True
或0/False
,默认值为False
1/True
或0/False
,默认值为False
en
或zh
,默认值为zh
0.0.0.0
表示所有路由,127.0.0.1
仅用于本地网络。默认值为127.0.0.1
1/True
或0/False
,默认值为False
其他变量如CUDA_VISIBLE_DEVICES
也支持,但未在此列出。
教程名称 |
---|
深度学习入门 |
大模型基础知识 |
提示词工程 |
Transformer结构介绍 |
训练技术选型 |
数据预处理 |
量化 |
训练 |
推理 |
部署 |
评估 |
本框架使用Apache License (Version 2.0)进行许可。模型和数据集请查看原资源页面并遵守对应License。
@misc{zhao2024swiftascalablelightweightinfrastructure,
title={SWIFT:A Scalable lightWeight Infrastructure for Fine-Tuning},
author={Yuze Zhao and Jintao Huang and Jinghan Hu and Xingjun Wang and Yunlin Mao and Daoze Zhang and Zeyinzi Jiang and Zhikai Wu and Baole Ai and Ang Wang and Wenmeng Zhou and Yingda Chen},
year={2024},
eprint={2408.05517},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.05517},
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。