It is well known that featuremap attention and multi-path representation are important for visual recognition. In this paper, we present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations. Our design results in a simple and unified computation block, which can be parameterized using only a few variables. Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification. In addition, ResNeSt has achieved superior transfer learning results on several public benchmarks serving as the backbone, and has been adopted by the winning entries of COCO-LVIS challenge. The source code for complete system and pretrained models are publicly available.
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | S-101-D8 | 512x1024 | 80000 | 11.4 | 2.39 | V100 | 77.56 | 78.98 | config | model | log |
PSPNet | S-101-D8 | 512x1024 | 80000 | 11.8 | 2.52 | V100 | 78.57 | 79.19 | config | model | log |
DeepLabV3 | S-101-D8 | 512x1024 | 80000 | 11.9 | 1.88 | V100 | 79.67 | 80.51 | config | model | log |
DeepLabV3+ | S-101-D8 | 512x1024 | 80000 | 13.2 | 2.36 | V100 | 79.62 | 80.27 | config | model | log |
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | S-101-D8 | 512x512 | 160000 | 14.2 | 12.86 | V100 | 45.62 | 46.16 | config | model | log |
PSPNet | S-101-D8 | 512x512 | 160000 | 14.2 | 13.02 | V100 | 45.44 | 46.28 | config | model | log |
DeepLabV3 | S-101-D8 | 512x512 | 160000 | 14.6 | 9.28 | V100 | 45.71 | 46.59 | config | model | log |
DeepLabV3+ | S-101-D8 | 512x512 | 160000 | 16.2 | 11.96 | V100 | 46.47 | 47.27 | config | model | log |
@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。