6 Star 66 Fork 19

OpenMMLab/mmsegmentation

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
贡献代码
同步代码
Loading...
README

ResNeSt

ResNeSt: Split-Attention Networks

Introduction

Official Repo

Code Snippet

Abstract

It is well known that featuremap attention and multi-path representation are important for visual recognition. In this paper, we present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations. Our design results in a simple and unified computation block, which can be parameterized using only a few variables. Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification. In addition, ResNeSt has achieved superior transfer learning results on several public benchmarks serving as the backbone, and has been adopted by the winning entries of COCO-LVIS challenge. The source code for complete system and pretrained models are publicly available.

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) Device mIoU mIoU(ms+flip) config download
FCN S-101-D8 512x1024 80000 11.4 2.39 V100 77.56 78.98 config model | log
PSPNet S-101-D8 512x1024 80000 11.8 2.52 V100 78.57 79.19 config model | log
DeepLabV3 S-101-D8 512x1024 80000 11.9 1.88 V100 79.67 80.51 config model | log
DeepLabV3+ S-101-D8 512x1024 80000 13.2 2.36 V100 79.62 80.27 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) Device mIoU mIoU(ms+flip) config download
FCN S-101-D8 512x512 160000 14.2 12.86 V100 45.62 46.16 config model | log
PSPNet S-101-D8 512x512 160000 14.2 13.02 V100 45.44 46.28 config model | log
DeepLabV3 S-101-D8 512x512 160000 14.6 9.28 V100 45.71 46.59 config model | log
DeepLabV3+ S-101-D8 512x512 160000 16.2 11.96 V100 46.47 47.27 config model | log

Citation

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/open-mmlab/mmsegmentation.git
git@gitee.com:open-mmlab/mmsegmentation.git
open-mmlab
mmsegmentation
mmsegmentation
main

搜索帮助