代码拉取完成,页面将自动刷新
// This file copy from llvm/ADT/ArrayRef.h, version: 12.0.0
// Modified the following points
// 1. remove hash_value functions
// 2. replace with the llvm::NoneType with paddle::none_t
// 3. remove drop_while, drop_until, take_while, take_until methods
// 4. change ArrayRef to array_ref to unify naming style of utils
//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++
//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#pragma once
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <vector>
#include "paddle/utils/none.h"
#include "paddle/utils/small_vector.h"
namespace paddle {
/// array_ref - Represent a constant reference to an array (0 or more elements
/// consecutively in memory), i.e. a start pointer and a length. It allows
/// various APIs to take consecutive elements easily and conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the array_ref. For this reason, it is not in general
/// safe to store an array_ref.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template <typename T>
class array_ref {
public:
using iterator = const T *;
using const_iterator = const T *;
using size_type = size_t;
using reverse_iterator = std::reverse_iterator<iterator>;
private:
/// The start of the array, in an external buffer.
const T *Data = nullptr;
/// The number of elements.
size_type Length = 0;
public:
/// @name Constructors
/// @{
/// Construct an empty array_ref.
/*implicit*/ array_ref() = default;
/// Construct an empty array_ref from None.
/*implicit*/ array_ref(none_t) {}
/// Construct an array_ref from a single element.
/*implicit*/ array_ref(const T &OneElt) : Data(&OneElt), Length(1) {}
/// Construct an array_ref from a pointer and length.
/*implicit*/ array_ref(const T *data, size_t length)
: Data(data), Length(length) {}
/// Construct an array_ref from a range.
array_ref(const T *begin, const T *end) : Data(begin), Length(end - begin) {}
/// Construct an array_ref from a small_vector. This is templated in order to
/// avoid instantiating small_vector_template_common<T> whenever we
/// copy-construct an array_ref.
template <typename U>
/*implicit*/ array_ref(const small_vector_template_common<T, U> &Vec)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an array_ref from a std::vector.
template <typename A>
/*implicit*/ array_ref(const std::vector<T, A> &Vec)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an array_ref from a std::array
template <size_t N>
/*implicit*/ constexpr array_ref(const std::array<T, N> &Arr)
: Data(Arr.data()), Length(N) {}
/// Construct an array_ref from a C array.
template <size_t N>
/*implicit*/ constexpr array_ref(const T (&Arr)[N]) : Data(Arr), Length(N) {}
/// Construct an array_ref from a std::initializer_list.
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 9
// Disable gcc's warning in this constructor as it generates an enormous
// amount
// of messages. Anyone using array_ref should already be aware of the fact that
// it does not do lifetime extension.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winit-list-lifetime"
#endif
/*implicit*/ array_ref(const std::initializer_list<T> &Vec)
: Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()),
Length(Vec.size()) {}
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 9
#pragma GCC diagnostic pop
#endif
/// Construct an array_ref<const T*> from array_ref<T*>. This uses SFINAE to
/// ensure that only ArrayRefs of pointers can be converted.
template <typename U>
array_ref(const array_ref<U *> &A,
std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
* = nullptr)
: Data(A.data()), Length(A.size()) {}
/// Construct an array_ref<const T*> from a small_vector<T*>. This is
/// templated in order to avoid instantiating small_vector_template_common<T>
/// whenever we copy-construct an array_ref.
template <typename U, typename DummyT>
/*implicit*/ array_ref(
const small_vector_template_common<U *, DummyT> &Vec,
std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
nullptr)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an array_ref<const T*> from std::vector<T*>. This uses SFINAE
/// to ensure that only vectors of pointers can be converted.
template <typename U, typename A>
array_ref(
const std::vector<U *, A> &Vec,
std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = 0)
: Data(Vec.data()), Length(Vec.size()) {}
/// @}
/// @name Simple Operations
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
reverse_iterator rbegin() const { return reverse_iterator(end()); }
reverse_iterator rend() const { return reverse_iterator(begin()); }
/// empty - Check if the array is empty.
bool empty() const { return Length == 0; }
const T *data() const { return Data; }
/// size - Get the array size.
size_t size() const { return Length; }
/// front - Get the first element.
const T &front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last element.
const T &back() const {
assert(!empty());
return Data[Length - 1];
}
// copy - Allocate copy in Allocator and return array_ref<T> to it.
template <typename Allocator>
array_ref<T> copy(Allocator &A) {
T *Buff = A.template Allocate<T>(Length);
std::uninitialized_copy(begin(), end(), Buff);
return array_ref<T>(Buff, Length);
}
/// equals - Check for element-wise equality.
bool equals(array_ref RHS) const {
if (Length != RHS.Length) return false;
return std::equal(begin(), end(), RHS.begin());
}
/// slice(n, m) - Chop off the first N elements of the array, and keep M
/// elements in the array.
array_ref<T> slice(size_t N, size_t M) const {
assert(N + M <= size() && "Invalid specifier");
return array_ref<T>(data() + N, M);
}
/// slice(n) - Chop off the first N elements of the array.
array_ref<T> slice(size_t N) const { return slice(N, size() - N); }
/// Drop the first \p N elements of the array.
array_ref<T> drop_front(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return slice(N, size() - N);
}
/// Drop the last \p N elements of the array.
array_ref<T> drop_back(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return slice(0, size() - N);
}
/// Return a copy of *this with only the first \p N elements.
array_ref<T> take_front(size_t N = 1) const {
if (N >= size()) return *this;
return drop_back(size() - N);
}
/// Return a copy of *this with only the last \p N elements.
array_ref<T> take_back(size_t N = 1) const {
if (N >= size()) return *this;
return drop_front(size() - N);
}
/// @}
/// @name Operator Overloads
/// @{
const T &operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
std::enable_if_t<std::is_same<U, T>::value, array_ref<T>> &operator=(
U &&Temporary) = delete;
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
std::enable_if_t<std::is_same<U, T>::value, array_ref<T>> &operator=(
std::initializer_list<U>) = delete;
/// @}
/// @name Expensive Operations
/// @{
std::vector<T> vec() const { return std::vector<T>(Data, Data + Length); }
/// @}
/// @name Conversion operators
/// @{
operator std::vector<T>() const {
return std::vector<T>(Data, Data + Length);
}
/// @}
};
/// @name array_ref Convenience constructors
/// @{
/// Construct an array_ref from a single element.
template <typename T>
array_ref<T> make_array_ref(const T &OneElt) {
return OneElt;
}
/// Construct an array_ref from a pointer and length.
template <typename T>
array_ref<T> make_array_ref(const T *data, size_t length) {
return array_ref<T>(data, length);
}
/// Construct an array_ref from a range.
template <typename T>
array_ref<T> make_array_ref(const T *begin, const T *end) {
return array_ref<T>(begin, end);
}
/// Construct an array_ref from a small_vector.
template <typename T>
array_ref<T> make_array_ref(const small_vector_impl<T> &Vec) {
return Vec;
}
/// Construct an array_ref from a small_vector.
template <typename T, unsigned N>
array_ref<T> make_array_ref(const small_vector<T, N> &Vec) {
return Vec;
}
/// Construct an array_ref from a std::vector.
template <typename T>
array_ref<T> make_array_ref(const std::vector<T> &Vec) {
return Vec;
}
/// Construct an array_ref from a std::array.
template <typename T, std::size_t N>
array_ref<T> make_array_ref(const std::array<T, N> &Arr) {
return Arr;
}
/// Construct an array_ref from an array_ref (no-op) (const)
template <typename T>
array_ref<T> make_array_ref(const array_ref<T> &Vec) {
return Vec;
}
/// Construct an array_ref from an array_ref (no-op)
template <typename T>
array_ref<T> &make_array_ref(array_ref<T> &Vec) {
return Vec;
}
/// Construct an array_ref from a C array.
template <typename T, size_t N>
array_ref<T> make_array_ref(const T (&Arr)[N]) {
return array_ref<T>(Arr);
}
/// @}
/// @name array_ref Comparison Operators
/// @{
template <typename T>
inline bool operator==(array_ref<T> LHS, array_ref<T> RHS) {
return LHS.equals(RHS);
}
template <typename T>
inline bool operator==(small_vector_impl<T> &LHS, array_ref<T> RHS) {
return array_ref<T>(LHS).equals(RHS);
}
template <typename T>
inline bool operator!=(array_ref<T> LHS, array_ref<T> RHS) {
return !(LHS == RHS);
}
template <typename T>
inline bool operator!=(small_vector_impl<T> &LHS, array_ref<T> RHS) {
return !(LHS == RHS);
}
} // namespace paddle
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。