This repository contains a moded version of PyTorch YOLOv5 (https://github.com/ultralytics/yolov5). It filters out every detection that is not a person. The detections of persons are then passed to a Deep Sort algorithm (https://github.com/ZQPei/deep_sort_pytorch) which tracks the persons. The reason behind the fact that it just tracks persons is that the deep association metric is trained on a person ONLY datatset.
The implementation is based on two papers:
Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:
pip install -U -r requirements.txt
All dependencies are included in the associated docker images. Docker requirements are:
nvidia-docker
git clone --recurse-submodules https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch.git
If you already cloned and forgot to use --recurse-submodules
you can run git submodule update --init
.pt
file under yolov5/weights/
deep_sort/deep/checkpoint/
Tracking can be run on most video formats
python3 track.py --source ...
--source file.mp4
--source 0
--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa
--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg
MOT compliant results can be saved to inference/output
by
python3 track.py --source ... --save-txt
For more detailed information about the algorithms and their corresponding lisences used in this project access their official github implementations.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。