代码拉取完成,页面将自动刷新
The Pytorch implementation is from WongKinYiu/ScaledYOLOv4 yolov4-csp branch. It can load yolov4-csp.cfg and yolov4-csp.weights(from AlexeyAB/darknet).
Note: There is a slight difference in yolov4-csp.cfg for darknet and pytorch. Use the one given in the above repo.
INPUT_H
, INPUT_W
defined in yololayer.hCLASS_NUM
defined in yololayer.hUSE_FP16
in yolov4_csp.cppDEVICE
in yolov4_csp.cppNMS_THRESH
in yolov4_csp.cppBBOX_CONF_THRESH
in yolov4_csp.cppBATCH_SIZE
in yolov4_csp.cppgit clone https://github.com/wang-xinyu/tensorrtx.git
git clone -b yolov4-csp https://github.com/WongKinYiu/ScaledYOLOv4.git
// download yolov4-csp.weights from https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-csp#yolov4-csp
cp {tensorrtx}/scaled-yolov4/gen_wts.py {ScaledYOLOv4/}
cd {ScaledYOLOv4/}
python gen_wts.py yolov4-csp.weights
// a file 'yolov4_csp.wts' will be generated.
mv yolov4_csp.wts {tensorrtx}/scaled-yolov4/
cd {tensorrtx}/scaled-yolov4
mkdir build
cd build
cmake ..
make
sudo ./yolov4csp -s // serialize model to plan file i.e. 'yolov4csp.engine'
sudo ./yolov4csp -d ../../yolov3-spp/samples // deserialize plan file and run inference, the images in samples will be processed.
See the readme in home page.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。