1 Star 0 Fork 0

shenxiaoming77/DRL-Pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Clean, Robust, and Unified PyTorch implementation of popular DRL Algorithms


0.Star History


1.Dependencies

This repository uses the following python dependencies unless explicitly stated:

gymnasium==0.29.1
numpy==1.26.1
pytorch==2.1.0

python==3.11.5

2.How to use my code

Enter the folder of the algorithm that you want to use, and run the main.py to train from scratch:

python main.py

For more details, please check the README.md file in the corresponding algorithm folder.


3. Separate links of the code


4. Recommended Resources for DRL

4.1 Simulation Environments:

  • gym and gymnasium (Lightweight & Standard Env for DRL; Easy to start; Slow):

  • Isaac Sim (NVIDIA’s physics simulation environment; GPU accelerated; Superfast):

  • Sparrow (Light Weight Simulator for Mobile Robot; DRL friendly):

  • ROS (Popular & Comprehensive physical simulator for robots; Heavy and Slow):

  • Webots (Popular physical simulator for robots; Faster than ROS; Less realistic):

4.2 Books:

4.3 Online Courses:

4.4 Blogs:


5. Important Papers

DQN: Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533.

Double DQN: Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning[C]//Proceedings of the AAAI conference on artificial intelligence. 2016, 30(1).

Duel DQN: Wang, Ziyu, et al. "Dueling network architectures for deep reinforcement learning." International conference on machine learning. PMLR, 2016.

PER: Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay[J]. arXiv preprint arXiv:1511.05952, 2015.

C51: Bellemare M G, Dabney W, Munos R. A distributional perspective on reinforcement learning[C]//International conference on machine learning. PMLR, 2017: 449-458.

NoisyNet DQN: Fortunato M, Azar M G, Piot B, et al. Noisy networks for exploration[J]. arXiv preprint arXiv:1706.10295, 2017.

PPO: Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.

DDPG: Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.

TD3: Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-critic methods[C]//International conference on machine learning. PMLR, 2018: 1587-1596.

SAC: Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International conference on machine learning. PMLR, 2018: 1861-1870.

ASL: Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity


6. Training Curves of my Code:

Q-learning:

Duel Double DQN:

CartPole LunarLander

Noisy Duel DDQN on Atari Game:

Pong Enduro

Prioritized DQN/DDQN:

CartPole LunarLander

Categorical DQN:

CartPole LunarLander

NoisyNet DQN:

CartPole LunarLander

PPO Discrete:

PPO Continuous:

DDPG:

Pendulum LunarLanderContinuous

TD3:

SAC Continuous:

SAC Discrete:

Actor-Sharer-Learner (ASL):

空文件

简介

取消

发行版

暂无发行版

贡献者

全部

语言

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/shenxiaoming77/DRL-Pytorch.git
git@gitee.com:shenxiaoming77/DRL-Pytorch.git
shenxiaoming77
DRL-Pytorch
DRL-Pytorch
main

搜索帮助