3 Star 3 Fork 2

triobox/mlfinlab

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
BSD-3-Clause


Machine Learning Financial Laboratory (mlfinlab)

Build Status codecov pylint Score License: BSD3

Documentation Status PyPi Downloads Python

MLFinLab is an open source package based on the research of Dr Marcos Lopez de Prado (QuantResearch.org) in his new book Advances in Financial Machine Learning as well as various implementations from the Journal of Financial Data Science. This implementation started out as a spring board for a research project in the Masters in Financial Engineering programme at WorldQuant University and has grown into a mini research group called Hudson and Thames Quantitative Research (not affiliated with the university).

The following is the online documentation for the package: read-the-docs.

Sponsors and Donating


A special thank you to our sponsors! It is because of your contributions that we are able to continue the development of academic research for open source. If you would like to become a sponsor and help support our research, please sign up on Patreon.

Platinum Sponsor:

Gold Sponsors:

Supporter Sponsors:

Barriers to Entry

As most of you know, getting through the first 3 chapters of the book is challenging as it relies on HFT data to create the new financial data structures. Sourcing the HFT data is very difficult and thus we have resorted to purchasing the full history of S&P500 Emini futures tick data from TickData LLC.

We are not affiliated with TickData in any way but would like to recommend others to make use of their service. The full history cost us about $750 and is worth every penny. They have really done a great job at cleaning the data and providing it in a user friendly manner.

Sample Data

TickData does offer about 20 days worth of raw tick data which can be sourced from their website link.

For those of you interested in working with a two years of sample tick, volume, and dollar bars, it is provided for in the research repo..

You should be able to work on a few implementations of the code with this set.



Getting Started

Recommended versions:

  • Anaconda 3
  • Python 3.6

Installation for users

The package can be installed from the PyPi index via the console:

  1. Launch the terminal and run: pip install mlfinlab

Installation for developers

Clone the package repo to your local machine then follow the steps below.

Installation on Mac OS X and Ubuntu Linux

  1. Make sure you install the latest version of the Anaconda 3 distribution. To do this you can follow the install and update instructions found on this link: https://www.anaconda.com/download/#mac
  2. Launch a terminal
  3. Create a New Conda Environment. From terminal: conda create -n <env name> python=3.6 anaconda accept all the requests to install.
  4. Now activate the environment with source activate <env name>.
  5. From Terminal: go to the directory where you have saved the file, example: cd Desktop/mlfinlab/.
  6. Install Python requirements, by running the command: pip install -r requirements.txt

Installation on Windows

  1. Download and install the latest version of Anaconda 3
  2. Launch Anaconda Navigator
  3. Click Environments, choose an environment name, select Python 3.6, and click Create
  4. Click Home, browse to your new environment, and click Install under Jupyter Notebook
  5. Launch Anaconda Prompt and activate the environment: conda activate <env name>
  6. From Anaconda Prompt: go to the directory where you have saved the file, example: cd Desktop/mlfinlab/.
  7. Install Python requirements, by running the command: pip install -r requirements.txt

How To Run Checks Locally

On your local machine open the terminal and cd into the working dir.

  1. Code style checks: ./pylint
  2. Unit tests: python -m unittest discover
  3. Code coverage: bash coverage

Built With

  • Github - Development platform and repo
  • Travis-CI - Continuous integration, test and deploy

Additional Research Repo

BlackArbsCEO has a great repo based on de Prado's research. It covers many of the questions at the back of every chapter and was the first source on Github to do so. It has also been a good source of inspiration for our research.

Contact us

We have recently opened access to our Slack channel to help form a community and encourage contributions.

Looking forward to hearing from you!

License

This project is licensed under the 3-Clause BSD License - see the LICENSE.txt file for details.

BSD 3-Clause License Copyright (c) 2019, Hudson and Thames Quantitative Research All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

简介

Package based on the work of Dr Marcos Lopez de Prado regarding his research with respect to Advances in Financial Machine Learning 展开 收起
Python 等 2 种语言
BSD-3-Clause
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/triobox/mlfinlab.git
git@gitee.com:triobox/mlfinlab.git
triobox
mlfinlab
mlfinlab
master

搜索帮助