1 Star 1 Fork 0

tttralf/UI-TARS

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

Local Image

🤗 Hugging Face Models   |   🤖 ModelScope   |    📑 Paper    |   🖥️ UI-TARS-desktop  
🏄 Midscene (Browser Automation)    |   🤗 Space   |   🫨 Discord  

We also offer a UI-TARS-desktop version, which can operate on your local personal device. To use it, please visit https://github.com/bytedance/UI-TARS-desktop. To use UI-TARS in web automation, you may refer to the open-source project Midscene.js.

⚠️ Important Announcement: GGUF Model Performance

The GGUF model has undergone quantization, but unfortunately, its performance cannot be guaranteed. As a result, we have decided to downgrade it.

💡 Alternative Solution:
You can use Cloud Deployment or Local Deployment [vLLM](If you have enough GPU resources) instead.

We appreciate your understanding and patience as we work to ensure the best possible experience.

Updates

  • 🚀 01.25: We updated the Cloud Deployment section in the 中文版: GUI模型部署教程 with new information related to the ModelScope platform. You can now use the ModelScope platform for deployment.

Overview

UI-TARS is a next-generation native GUI agent model designed to interact seamlessly with graphical user interfaces (GUIs) using human-like perception, reasoning, and action capabilities. Unlike traditional modular frameworks, UI-TARS integrates all key components—perception, reasoning, grounding, and memory—within a single vision-language model (VLM), enabling end-to-end task automation without predefined workflows or manual rules. Local Image Local Image

Core Features

Perception

  • Comprehensive GUI Understanding: Processes multimodal inputs (text, images, interactions) to build a coherent understanding of interfaces.
  • Real-Time Interaction: Continuously monitors dynamic GUIs and responds accurately to changes in real-time.

Action

  • Unified Action Space: Standardized action definitions across platforms (desktop, mobile, and web).
  • Platform-Specific Actions: Supports additional actions like hotkeys, long press, and platform-specific gestures.

Reasoning

  • System 1 & System 2 Reasoning: Combines fast, intuitive responses with deliberate, high-level planning for complex tasks.
  • Task Decomposition & Reflection: Supports multi-step planning, reflection, and error correction for robust task execution.

Memory

  • Short-Term Memory: Captures task-specific context for situational awareness.
  • Long-Term Memory: Retains historical interactions and knowledge for improved decision-making.

Capabilities

  • Cross-Platform Interaction: Supports desktop, mobile, and web environments with a unified action framework.
  • Multi-Step Task Execution: Trained to handle complex tasks through multi-step trajectories and reasoning.
  • Learning from Synthetic and Real Data: Combines large-scale annotated and synthetic datasets for improved generalization and robustness.

Performance

Perception Capabilty Evaluation

Model VisualWebBench WebSRC SQAshort
Qwen2-VL-7B 73.3 81.8 84.9
Qwen-VL-Max 74.1 91.1 78.6
Gemini-1.5-Pro 75.4 88.9 82.2
UIX-Qwen2-7B 75.9 82.9 78.8
Claude-3.5-Sonnet 78.2 90.4 83.1
GPT-4o 78.5 87.7 82.3
UI-TARS-2B 72.9 89.2 86.4
UI-TARS-7B 79.7 93.6 87.7
UI-TARS-72B 82.8 89.3 88.6

Grounding Capability Evaluation

  • ScreenSpot Pro
Agent Model Dev-Text Dev-Icon Dev-Avg Creative-Text Creative-Icon Creative-Avg CAD-Text CAD-Icon CAD-Avg Scientific-Text Scientific-Icon Scientific-Avg Office-Text Office-Icon Office-Avg OS-Text OS-Icon OS-Avg Avg-Text Avg-Icon Avg
QwenVL-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1
GPT-4o 1.3 0.0 0.7 1.0 0.0 0.6 2.0 0.0 1.5 2.1 0.0 1.2 1.1 0.0 0.9 0.0 0.0 0.0 1.3 0.0 0.8
SeeClick 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.9 2.8 0.0 1.5 1.8 0.0 1.1
Qwen2-VL-7B 2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
OS-Atlas-4B 7.1 0.0 3.7 3.0 1.4 2.3 2.0 0.0 1.5 9.0 5.5 7.5 5.1 3.8 4.8 5.6 0.0 3.1 5.0 1.7 3.7
ShowUI-2B 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7
CogAgent-18B 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 10.0 5.6 0.0 3.1 12.0 0.8 7.7
Aria-UI 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
UGround-7B 26.6 2.1 14.7 27.3 2.8 17.0 14.2 1.6 11.1 31.9 2.7 19.3 31.6 11.3 27.0 17.8 0.0 9.7 25.0 2.8 16.5
Claude Computer Use 22.0 3.9 12.6 25.9 3.4 16.8 14.5 3.7 11.9 33.9 15.8 25.8 30.1 16.3 26.9 11.0 4.5 8.1 23.4 7.1 17.1
OS-Atlas-7B 33.1 1.4 17.7 28.8 2.8 17.9 12.2 4.7 10.3 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 28.1 4.0 18.9
UGround-V1-7B - - 35.5 - - 27.8 - - 13.5 - - 38.8 - - 48.8 - - 26.1 - - 31.1
UI-TARS-2B 47.4 4.1 26.4 42.9 6.3 27.6 17.8 4.7 14.6 56.9 17.3 39.8 50.3 17.0 42.6 21.5 5.6 14.3 39.6 8.4 27.7
UI-TARS-7B 58.4 12.4 36.1 50.0 9.1 32.8 20.8 9.4 18.0 63.9 31.8 50.0 63.3 20.8 53.5 30.8 16.9 24.5 47.8 16.2 35.7
UI-TARS-72B 63.0 17.3 40.8 57.1 15.4 39.6 18.8 12.5 17.2 64.6 20.9 45.7 63.3 26.4 54.8 42.1 15.7 30.1 50.9 17.5 38.1
  • ScreenSpot
Method Mobile-Text Mobile-Icon/Widget Desktop-Text Desktop-Icon/Widget Web-Text Web-Icon/Widget Avg
Agent Framework
GPT-4 (SeeClick) 76.6 55.5 68.0 28.6 40.9 23.3 48.8
GPT-4 (OmniParser) 93.9 57.0 91.3 63.6 81.3 51.0 73.0
GPT-4 (UGround-7B) 90.1 70.3 87.1 55.7 85.7 64.6 75.6
GPT-4o (SeeClick) 81.0 59.8 69.6 33.6 43.9 26.2 52.3
GPT-4o (UGround-7B) 93.4 76.9 92.8 67.9 88.7 68.9 81.4
Agent Model
GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround-7B 82.8 60.3 82.5 63.6 80.4 70.4 73.3
Aguvis-G-7B 88.3 78.2 88.1 70.7 85.7 74.8 81.8
OS-Atlas-7B 93.0 72.9 91.8 62.9 90.9 74.3 82.5
Claude Computer Use - - - - - - 83.0
Gemini 2.0 (Project Mariner) - - - - - - 84.0
Aguvis-7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
Aguvis-72B 94.5 85.2 95.4 77.9 91.3 85.9 89.2
Our Model
UI-TARS-2B 93.0 75.5 90.7 68.6 84.3 74.8 82.3
UI-TARS-7B 94.5 85.2 95.9 85.7 90.0 83.5 89.5
UI-TARS-72B 94.9 82.5 89.7 88.6 88.7 85.0 88.4
  • ScreenSpot v2
Method Mobile-Text Mobile-Icon/Widget Desktop-Text Desktop-Icon/Widget Web-Text Web-Icon/Widget Avg
Agent Framework
GPT-4o (SeeClick) 85.2 58.8 79.9 37.1 72.7 30.1 63.6
GPT-4o (OS-Atlas-4B) 95.5 75.8 79.4 49.3 90.2 66.5 79.1
GPT-4o (OS-Atlas-7B) 96.2 83.4 89.7 69.3 94.0 79.8 87.1
Agent Model
SeeClick 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas-4B 87.2 59.7 72.7 46.4 85.9 63.1 71.9
OS-Atlas-7B 95.2 75.8 90.7 63.6 90.6 77.3 84.1
Our Model
UI-TARS-2B 95.2 79.1 90.7 68.6 87.2 78.3 84.7
UI-TARS-7B 96.9 89.1 95.4 85.0 93.6 85.2 91.6
UI-TARS-72B 94.8 86.3 91.2 87.9 91.5 87.7 90.3

Offline Agent Capability Evaluation

  • Multimodal Mind2Web
Method Cross-Task Ele.Acc Cross-Task Op.F1 Cross-Task Step SR Cross-Website Ele.Acc Cross-Website Op.F1 Cross-Website Step SR Cross-Domain Ele.Acc Cross-Domain Op.F1 Cross-Domain Step SR
Agent Framework
GPT-4o (SeeClick) 32.1 - - 33.1 - - 33.5 - -
GPT-4o (UGround) 47.7 - - 46.0 - - 46.6 - -
GPT-4o (Aria-UI) 57.6 - - 57.7 - - 61.4 - -
GPT-4V (OmniParser) 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
Agent Model
GPT-4o 5.7 77.2 4.3 5.7 79.0 3.9 5.5 86.4 4.5
GPT-4 (SOM) 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7
GPT-3.5 (Text-only) 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 (Text-only) 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7
Claude 62.7 84.7 53.5 59.5 79.6 47.7 64.5 85.4 56.4
Aguvis-7B 64.2 89.8 60.4 60.7 88.1 54.6 60.4 89.2 56.6
CogAgent - - 62.3 - - 54.0 - - 59.4
Aguvis-72B 69.5 90.8 64.0 62.6 88.6 56.5 63.5 88.5 58.2
Our Model
UI-TARS-2B 62.3 90.0 56.3 58.5 87.2 50.8 58.8 89.6 52.3
UI-TARS-7B 73.1 92.2 67.1 68.2 90.9 61.7 66.6 90.9 60.5
UI-TARS-72B 74.7 92.5 68.6 72.4 91.2 63.5 68.9 91.8 62.1
  • Android Control and GUI Odyssey
Agent Models AndroidControl-Low Type AndroidControl-Low Grounding AndroidControl-Low SR AndroidControl-High Type AndroidControl-High Grounding AndroidControl-High SR GUIOdyssey Type GUIOdyssey Grounding GUIOdyssey SR
Claude 74.3 0.0 19.4 63.7 0.0 12.5 60.9 0.0 3.1
GPT-4o 74.3 0.0 19.4 66.3 0.0 20.8 34.3 0.0 3.3
SeeClick 93.0 73.4 75.0 82.9 62.9 59.1 71.0 52.4 53.9
InternVL-2-4B 90.9 84.1 80.1 84.1 72.7 66.7 82.1 55.5 51.5
Qwen2-VL-7B 91.9 86.5 82.6 83.8 77.7 69.7 83.5 65.9 60.2
Aria-UI -- 87.7 67.3 -- 43.2 10.2 -- 86.8 36.5
OS-Atlas-4B 91.9 83.8 80.6 84.7 73.8 67.5 83.5 61.4 56.4
OS-Atlas-7B 93.6 88.0 85.2 85.2 78.5 71.2 84.5 67.8 62.0
Aguvis-7B -- -- 80.5 -- -- 61.5 -- -- --
Aguvis-72B -- -- 84.4 -- -- 66.4 -- -- --
UI-TARS-2B 98.1 87.3 89.3 81.2 78.4 68.9 93.9 86.8 83.4
UI-TARS-7B 98.0 89.3 90.8 83.7 80.5 72.5 94.6 90.1 87.0
UI-TARS-72B 98.1 89.9 91.3 85.2 81.5 74.7 95.4 91.4 88.6

Online Agent Capability Evaluation

Method OSWorld (Online) AndroidWorld (Online)
Agent Framework
GPT-4o (UGround) - 32.8
GPT-4o (Aria-UI) 15.2 44.8
GPT-4o (Aguvis-7B) 14.8 37.1
GPT-4o (Aguvis-72B) 17.0 -
GPT-4o (OS-Atlas-7B) 14.6 -
Agent Model
GPT-4o 5.0 34.5 (SoM)
Gemini-Pro-1.5 5.4 22.8 (SoM)
Aguvis-72B 10.3 26.1
Claude Computer-Use 14.9 (15 steps) 27.9
Claude Computer-Use 22.0 (50 steps) -
Our Model
UI-TARS-7B-SFT 17.7 (15 steps) 33.0
UI-TARS-7B-DPO 18.7 (15 steps) -
UI-TARS-72B-SFT 18.8 (15 steps) 46.6
UI-TARS-72B-DPO 22.7 (15 steps) -
UI-TARS-72B-DPO 24.6 (50 steps) -

Deployment

Cloud Deployment

We recommend using HuggingFace Inference Endpoints for fast deployment. We provide two docs for reference:

English version: GUI Model Deployment Guide

中文版: GUI模型部署教程

Local Deployment [Transformers]

We follow the same way as Qwen2-VL. Check this tutorial for more details.

Local Deployment [vLLM]

We recommend using vLLM for fast deployment and inference. You need to use vllm>=0.6.1.

pip install -U transformers
VLLM_VERSION=0.6.6
CUDA_VERSION=cu124
pip install vllm==${VLLM_VERSION} --extra-index-url https://download.pytorch.org/whl/${CUDA_VERSION}

Download the Model

We provide three model sizes on Hugging Face: 2B, 7B, and 72B. To achieve the best performance, we recommend using the 7B-DPO or 72B-DPO model (depends on your GPU configuration):

Start an OpenAI API Service

Run the command below to start an OpenAI-compatible API service. It is recommended to set the tensor parallel size -tp=1 for 7B models and -tp=4 for 72B models.

python -m vllm.entrypoints.openai.api_server --served-model-name ui-tars \
    --model <path to your model> --limit-mm-per-prompt image=5 -tp <tp>

Then you can use the chat API as below with the gui prompt (choose from mobile or computer) and base64-encoded local images (see OpenAI API protocol document for more details), you can also use it in UI-TARS-desktop:

import base64
from openai import OpenAI


instruction = "search for today's weather"
screenshot_path = "screenshot.png"
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key="empty",
)

## Below is the prompt for mobile
prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use \"\
\" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished()
call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.


## Note
- Use Chinese in `Thought` part.
- Summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""

with open(screenshot_path, "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
response = client.chat.completions.create(
    model="ui-tars",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": prompt + instruction},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
            ],
        },
    ],
    frequency_penalty=1,
    max_tokens=128,
)
print(response.choices[0].message.content)

For single step grounding task or inference on grounding dataset such as Seeclick, kindly refer to the following script:

import base64
from openai import OpenAI


instruction = "search for today's weather"
screenshot_path = "screenshot.png"
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key="empty",
)

## Below is the prompt for mobile
prompt = r"""Output only the coordinate of one point in your response. What element matches the following task: """

with open(screenshot_path, "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
response = client.chat.completions.create(
    model="ui-tars",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
                {"type": "text", "text": prompt + instruction}
            ],
        },
    ],
    frequency_penalty=1,
    max_tokens=128,
)
print(response.choices[0].message.content)

Prompt Templates

We provide two prompt templates currently for stable running and performance, one for mobile scene and one for personal computer scene.

  • Prompt template for mobile:
## Below is the prompt for mobile
prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space
click(start_box='<|box_start|>(x1,y1)<|box_end|>')
long_press(start_box='<|box_start|>(x1,y1)<|box_end|>', time='')
type(content='')
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
press_home()
press_back()
finished(content='') # Submit the task regardless of whether it succeeds or fails.

## Note
- Use English in `Thought` part.

- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""
  • Prompt template for computer:
## Below is the prompt for computer
prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use \"\
\" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished()
call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.


## Note
- Use Chinese in `Thought` part.
- Summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""

Local Deployment [Ollama]

Ollama will be coming soon. Please be patient and wait~ 😊

Explanation of Inference Results

Coordinate Mapping

The model generates a 2D coordinate output that represents relative positions. To convert these values to image-relative coordinates, divide each component by 1000 to obtain values in the range [0,1]. The absolute coordinates required by the Action can be calculated by:

  • X absolute = X relative × image width
  • Y absolute = Y relative × image height

For example, given a screen size: 1920 × 1080, and the model generates a coordinate output of (235, 512). The X absolute is round(1920*235/1000)=451. The Y absolute is round(1080*512/1000)=553. The absolute coordinate is (451, 553)

Use in desktop and web automation

To experience UI-TARS agent in desktop, you may refer to UI-TARS-desktop. We recommend using the 7B/72B DPO model on desktop.

Midscene.js is an open-source web automation SDK that has supported UI-TARS model. Developers can use javascript and natural language to control the browser. See this guide for more details about setting up the model.

License

UI-TARS is licensed under the Apache License 2.0.

Acknowledgements

This project builds upon and extends the capabilities of Qwen2-VL, a powerful vision-language model, which serves as the foundational architecture for UI-TARS. We would like to acknowledge the contributions of the developers and researchers behind Qwen2-VL for their groundbreaking work in the field of multimodal AI and for providing a robust base for further advancements.

Additionally, we thank the broader open-source community for their datasets, tools, and insights that have facilitated the development of UI-TARS. These collaborative efforts continue to push the boundaries of what GUI automation and AI-driven agents can achieve.

Citation

If you find our paper and code useful in your research, please consider giving a star and citation

@article{qin2025ui,
  title={UI-TARS: Pioneering Automated GUI Interaction with Native Agents},
  author={Qin, Yujia and Ye, Yining and Fang, Junjie and Wang, Haoming and Liang, Shihao and Tian, Shizuo and Zhang, Junda and Li, Jiahao and Li, Yunxin and Huang, Shijue and others},
  journal={arXiv preprint arXiv:2501.12326},
  year={2025}
}
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

字节跳动的操作软件 展开 收起
Python
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/tttralf/UI-TARS.git
git@gitee.com:tttralf/UI-TARS.git
tttralf
UI-TARS
UI-TARS
main

搜索帮助