andyscu

@wanganzhi666

andyscu 暂无简介

贵州省/贵阳市
所有 个人的 我参与的
Forks 暂停/关闭的

    CVIP/mmcv forked from Gitee 极速下载/mmcv

    mmcv 是用于计算机视觉研究的基础 Python 库,支持 MMLAB 中的许多研究项目,例如 mmdetection

    DL-Detection/poly-yolo forked from hchouse/poly-yolo

    andyscu/sample-imageinpainting-HiFill

    andyscu/mlxtend

    A library of extension and helper modules for Python's data analysis and machine learning libraries.

    andyscu/InstColorization

    andyscu/pumpkin-book

    《机器学习》(西瓜书)公式推导解析,在线阅读地址:https://datawhalechina.github.io/pumpkin-book

    andyscu/ResNeSt

    ResNeSt: Split-Attention Network

    andyscu/AGIS-Net

    [SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

    andyscu/RRM

    Reliability Does Matter: An End-to-End Weakly Supervised Semantic Segmentation Approach

    andyscu/pytorch-summary

    Model summary in PyTorch similar to `model.summary()` in Keras

    andyscu/pyro

    Deep universal probabilistic programming with Python and PyTorch

    andyscu/mmfashion

    Open-source toolbox for visual fashion analysis based on PyTorch

    andyscu/saic_depth_completion

    Official implementation of "Decoder Modulation for Indoor Depth Completion" https://arxiv.org/abs/2005.08607

    andyscu/STM

    Video Object Segmentation using Space-Time Memory Networks

    andyscu/mmcv

    Open MMLab Computer Vision Foundation

    andyscu/U-2-Net

    The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

    andyscu/data-augmentation-review

    List of useful data augmentation resources. You will find here some not common techniques, libraries, links to github repos, papers and others.

    andyscu/coding-interview-university

    A complete computer science study plan to become a software engineer.

    andyscu/ml-visuals

    Visuals contains figures and templates which you can reuse and customize to improve your scientific writing.

    andyscu/CascadePSP

    [CVPR2020] CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement

搜索帮助