本项目(网页版传送门)将PyTorch官方书籍《Deep learning with PyTorch》(基本摘录版)翻译成中文并给出全书可运行的相关代码。
This project translates the PyTorch official book "Deep learning with PyTorch" (essential excerpt version) into Chinese.
自 2016 年诞生以来,PyTorch 已经成为当今最火热的深度学习框架之一。最近,官方权威的 PyTorch 教程书《Deep learning with PyTorch》终于问世了,消息一出就获得巨佬 Yann LeCun 力荐,是入门PyTorch及深度学习的绝佳教材。
需要注意的是,PyTorch官网提供的PDF是基本摘录版(Essential Excerpts),共141页,内容包括以下五个部分:
因此可作为快速入门PyTorch的教程。此书完整版目前也可免费预览,传送门。
本项目将原书翻译成中文并且给出可运行的相关代码。
本仓库主要包含code和docs两个文件夹(外加一些数据存放在data中)。其中code文件夹就是每章相关jupyter notebook代码;docs文件夹就是markdown格式的《Deep learning with PyTorch》(基本摘录版)书中的相关内容的中文翻译,然后利用docsify将网页文档部署到GitHub Pages上。欢迎对本项目做出贡献或提出issue。
本项目面向对PyTorch感兴趣,尤其是想快速入门PyTorch的童鞋。本项目并不要求你有任何深度学习或者机器学习的背景知识,你只需了解基础的数学和编程,如基础的线性代数、微分和概率,以及基础的Python编程。
本仓库的文档包含一些latex公式,但github的markdown原生是不支持公式显示的,而docs文件夹已经利用docsify被部署到了GitHub Pages上,所以你可以方便地访问本项目网页版。如果你想跑一下相关代码的话需要把本项目clone下来,然后运行code文件夹下相关代码。
由于本项目所翻译的是基本摘录版,仅141页,所以适合快速入门PyTorch。如果你想对PyTorch以及深度学习(例如计算机视觉、自然语言处理等)有更深入的学习,可能还需要更多的资料,感兴趣的可以参考我的另一个项目Dive-into-DL-PyTorch。
CC BY-NC(署名-非商业性使用)4.0
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。