# pymatsolver **Repository Path**: xjtu-forge/pymatsolver ## Basic Information - **Project Name**: pymatsolver - **Description**: 【镜像】一套简易的矩阵求解器包 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: https://github.com/simpeg/pymatsolver - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-03-08 - **Last Updated**: 2025-10-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README pymatsolver *********** .. image:: https://img.shields.io/pypi/v/pymatsolver.svg :target: https://pypi.python.org/pypi/pymatsolver :alt: Latest PyPI version .. image:: https://img.shields.io/badge/license-MIT-blue.svg :target: https://github.com/simpeg/pymatsolver/blob/master/LICENSE :alt: MIT license. .. image:: https://codecov.io/gh/simpeg/pymatsolver/branch/main/graph/badge.svg?token=8uQoxzxf3r :target: https://codecov.io/gh/simpeg/pymatsolver :alt: Coverage status A (sparse) matrix solver for python. Solving Ax = b should be as easy as: .. code-block:: python Ainv = Solver(A) x = Ainv * b In pymatsolver we provide a number of wrappers to existing numerical packages. Nothing fancy here. Solvers Available ================= All solvers work with :code:`scipy.sparse` matricies, and a single or multiple right hand sides using :code:`numpy`: * L/U Triangular Solves * Wrapping of SciPy matrix solvers (direct and indirect) * Pardiso solvers * Mumps solvers Installing Solvers ================== Often, there are faster solvers available for your system than the default scipy factorizations available. pymatsolver provides a consistent interface to both MKL's ``Pardiso`` routines and the ``MUMPS`` solver package. To make use of these we use intermediate wrappers for the libraries that must be installed separately. Pardiso ------- The Pardiso interface is recommended for Intel processor based systems. The interface is enabled by the ``pydiso`` python package, which can be installed through conda-forge as: .. code:: conda install -c conda-forge pydiso Mumps ----- Mumps is available for all platforms. The mumps interface is enabled by installing the ``python-mumps`` wrapper package. This can easily be installed through conda-forge with: .. code:: conda install -c conda-forge python-mumps Code: https://github.com/simpeg/pymatsolver Tests: https://github.com/simpeg/pymatsolver/actions Bugs & Issues: https://github.com/simpeg/pymatsolver/issues License: MIT