# TL_Dataset_Classification **Repository Path**: xkeys1997/TL_Dataset_Classification ## Basic Information - **Project Name**: TL_Dataset_Classification - **Description**: implement an end-to-end classifier based on Traffic Light Dataset - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TL_Dataset_Classification This repo implements an end-to-end classifier in Traffic Light Dataset based on pytorch. # Requirements * [pytorch](https://pytorch.org/):0.4.0 * [torchsummary](https://github.com/sksq96/pytorch-summary):`pip install torchsummary` * cv2: `pip install opencv-python` * matplotlib * numpy # How To Run **First**, you should clone this repo: ```bash $ git clone https://github.com/FangYang970206/TL_Dataset_Classification ``` **Second**, download the dataset with [onedrive][1], [baiduyun][2] or [google][3]. Move the `TL_Dataset.zip` in the `TL_Dataset_Classification/`, then unzip the `TL_Dataset.zip`. **Third**, start training. ```bash $ python main.py ``` or(custom) ```bash $ python main.py --img_resize_shape tuple --batch_size int --lr float --num_workers int --epochs int --val_size float --save_model bool --save_path str ``` The val_size(defualt=0.3) is radio in whole dataset. # Result learning curve: ![](imgs/learning_curve.png) In the testset, achieve 97.425%. (keep improving) [1]: https://1drv.ms/u/s!AgBYzHhocQD4hD2e-EnTWbq7RpWi [2]: https://pan.baidu.com/s/1voBHwdX2hH1p_jn4_6EhTg [3]: https://drive.google.com/open?id=17FYVON8jNwrecqaOdzGhD1jDXk0xoiDk