代码拉取完成,页面将自动刷新
This is a Pytorch implementation of gan_64x64.py
from Improved Training of Wasserstein GANs.
* not ready for conditional gan yet
Fresh training
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --train_dir /path/to/train --validation_dir /path/to/validation/ --output_path /path/to/output/ --dim 64 --saving_step 300 --num_workers 8
Continued training:
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --train_dir /path/to/train --validation_dir /path/to/validation/ --output_path /path/to/output/ --dim 64 --saving_step 300 --num_workers 8 --restore_mode --start_iter 5000
train.py
: This model is mainly based on GoodGenerator
and GoodDiscriminator
of gan_64x64.py
model from Improved Training of Wasserstein GANs. It has been trained on LSUN dataset for around 100k iters.congan_train.py
: ACGAN implementation, trained on 4 classes of LSUN datasetSample 1 | Sample 2 |
---|---|
Sample 1 | Sample 2 |
---|---|
During the implementation of this model, we built a test module to compare the result between original model (Tensorflow) and our model (Pytorch) for every layer we implemented. It is available at compare-tensorflow-pytorch
Results such as costs, generated images (every 200 iters) for tensorboard will be written to ./runs
folder.
To display the results to tensorboard, run: tensorboard --logdir runs
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。