记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等
记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等
基于CSI的WiFi室内定位研究
Code for a indoor position system based on RSSI reads of RFID tags.
Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.
最近一年贡献:0 次
最长连续贡献:0 日
最近连续贡献:0 日
贡献度的统计数据包括代码提交、创建任务 / Pull Request、合并 Pull Request,其中代码提交的次数需本地配置的 git 邮箱是 Gitee 帐号已确认绑定的才会被统计。